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ABSTRACT

The responses of young-of-the-year chinook salmon and American shad to

two-vector flow conditions were studied in a rotating treadmill appara-
tus that simulated velocities near stationary vertical and sloped fish

screens. Responses were measured by determining:

1. survival of fish for 6 h duration tests under light or
dark conditions, where approach velocities of up to
10.7 cm/s (0.35 ft/s) were combined with past-screen
velocities of up to 28.9 cm/s (0.95 ft/s), and

2. delayed effects of test conditions as reflected by mor-
tality within 24 h.

Salmon successfully withstood 6 h exposure to all velocities along both
vertical and sloped screen orientations. No significant difference in

survival occurred between tests conducted in light or dark. Mortality

caused by delayed effects of the tests was not appreciable.

Survival of shad during 6 h lighted tests was very high. However, their
ability to withstand increasing velocities decreased in dark tests, with
greater mortality along the sloped screen than the vertical screen. The
greater part of mortality was due to 6 h exposure rather than 24 h delayed
effects. ’

l/ Interagency Ecological Study Program for the Sacramento-San Joaquin
Estuary, Technical Report No. 4. September, 1982.






INTRODUCTION

The proposed Peripheral Canal intake site on the Sacramento River is located
on the downstream migration route of juvenile chinook salmon and American shad.
The magnitude of water diversions, and the need to minimize fish loss into the
canal, requires a fish screening facility of unprecedented size. Concepts for
a '"positive barrier, low velocity" fish screen include a stationary perforated
plate structure on the river bank which may be up to a mile long.

Fish entrained to the vicinity of the screen will encounter water velocities
caused primarily by two flow vectors. Water diversion from the river into the
canal will produce an approach velocity toward the fish screen, and may cause
impingement of fish on the screen. The second vector, a screen passing velocity,
is comprised of water remaining in the river channel, and may act as a guidance
flow for fish along the screen. With the fish screen located directly '"on-river,"
a passing velocity with a net downstream flow will guide fish away from the screen.
However, in the event of tidal reversals, an upstream flow could delay passage of
fish, increasing exposure time to as much as 6 h. The study presented here was
part of investigations into the '"on-river" screen concept, and particularly exam-
ines the effects that prolonged exposure to water velocities near the screen will
have on juvenile salmon and shad.

Swimming ability in relation to impingement velocities has been studied for
chinook salmon by Kerr (1953), Greenland and Thomas (1972), and Sazaki et al.
(1972) for short test durations (6-10 min.). Katz, Pritchard, and Warren (1959),
and Davis et al. (1963) examined swimming endurance over periods of up to two
days. Similar swimming performance evaluations of juvenile American shad for
periods ranging from 6 min. to 6 h also have been conducted (Fisher 1976, 1981).

The above investigations involved the testing of fish in water flow of a single
vector. My study was concerned with the reaction of salmon and shad to a two-
vector flow, combined approach and passing velocities. Tests under both light
and dark conditions were run along vertical and sloped screen surfaces to deter-
mine survival for a 6 h exposure, and 24 h post—test mortality. Results will be
used to develop Peripheral Canal fish screen design and operational criteria.

METHODS
Test Apparatus

A variety of techniques has been used to determine swimming performance of fish
(Blaxter 1969). Methods involving flumes, tunnels, or circular troughs have
utilized paddle wheels (MacLeod 1967), pumps (Thomas et al. 1964, Brett 1967),
or rotational momentum (Brett et al. 1958, Bainbridge 1960) and water jets
(Hettler 1978) to produce test velocities primarily of unidirectional flow.
Heuer and Tomljanovich (1979) evaluated the screen avoidance response of lar-
val fish in a flume using a limited two-vector flow.







A swimming ability treadmill (Figure 1) was designed for this study to subject
fish to simulated two-vector flow conditions envisiomed at the fish screen.

A velocity component approaching a stationary screen (V,), and a vector passing
along the same screen (V_) were simultaneously produced in a circular channel
0.3 m (1.0 ft) wide and 8.6 m (28.3 ft) in median circumference. The channel
was formed by two concentric vertical cylinders made of 16 gauge aluminum plate,
performated with 3.97 mm (5/32 in.) holes on 5.56 mm (7/32 in.E centers. Each
cylinder was 0.7 m (2.3 ft) tall and had diameters of 3.0 m (10.0 ft) and 2.4 m
(8.0 ft), respectively, resulting in a 0.3 m (1.0 ft) test space. The larger
diameter cylinder, comprising the outer channel wall, represented the stationary
test screen. The smaller cylinder was mounted on a turntable, forming the chan-
nel's inner wall and floor. A drive shaft connected the turntable to a rheo-
statically controlled 3 hp electric motor which allowed variable speed rotation.
The entire treadmill was enclosed in a steel tank (test chamber) 3.7 m (12.0 ft)
in diameter and 2.7 m (9.0 £t) tall. Water was introduced from a constant head
tank into the test chamber through a 0.6 m (2.0 ft) diameter inlet in the floor
of the chamber centered within the treadmill. A 2.4 m (8.0 ft) long rectangular
weir was located across a draining bay in the side of the chamber.

Operation of the apparatus was started by filling the chamber and submerging the
treadmill to a depth of 0.3 m (1.0 ft) in the test channel. Water level was
manually adjusted by a gate valve and point gauge. A flow of water radiated
from the inlet through the treadmill and drained over the weir.

The velocity of each flow vector could be controlled independently from the
other. Approach velocity to the stationary channel wall depended on withdrawal
of water from the channel. Withdrawal rates were regulated by adjusting the
discharge weir height while maintaining a constant water depth in the channel.
Velocity of the second flow vector passing along the stationary screen was con-
trolled by the speed of turntable rotation. A stopwatch was used to set rota-
tion speed, with one revolution in 55 s equivalent to a linear speed of 0.15 m/s
(0.5 ft/s). Flow in the test channel was imparted by circular momentum, thus
slippage occurring between turntable and water resulted in the actual water
velocity being lower than rotational velocity (Figure 2).

Test Fish

Swimming tests were conducted during 1977-1979 using juvenile wild fish collected
with a 15.2 X 1.2 m (50 X 4 ft) beach seine. The testing schedule corresponded
to the seasons of natural occurrence of each species. Chinook salmon were caught
in the Sacramento River above Red Bluff Dam and from the American River near
Sacramento between February and June. An exception was one group of salmon

taken from the artificial spawning channel of the Tehama-Colusa Canal at Red
Bluff. American shad were gathered during July through October from various
locations along the Sacramento River between Rio Vista and Sacramento.

Fish were transported in aerated containers to the testing facility at Hood,
California, where they were transferred to stainless steel holding tanks.
Unfiltered Sacramento River water was pumped directly into holding areas for
once through circulation. Velocities through the tanks were erratic but gen-
erally less than 0.6 cm/s (0.02 ft/s).
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Both species were held at least 24 h prior to testing under average illumina-
tion of 3.5 ft candles and fed three times daily with Oregon Moist Pellets (OMP).
Food was withheld at least 6 h before testing.

Test Parameters

Screen Angle

Two stationary screen orientations were tested in the treadmill. A series of
tests was conducted with the outer wall of the test channel positioned as pre-
viously described, in a vertical position essentially perpendicular to the
approach velocity., In a second series of tests, the stationary screen was sloped
at a 45° angle away from the approach vector. This configuration reduced the
test space by approximately 50% (Figure 3).

Velocities

Flow conditions used in the swimming tests were produced using combinations of
the approach and passing screen velocities., Approach velocities of 3.0, 6.1,
or 10.7 cm/s (0.1, 0.2, or 0.35 ft/s) were used, together with passing veloci-
ties of 4.9, 11.3, 17.4, 23.5, or 28.9.cm/s (0.16, 0.37, 0.57, 0.77, or 0.95
ft/s).

Light

Four 200 watt incandescent lamps suspended above the treadmill provided an
average illumination of 6.33 foot-candles at the water surface during tests
conducted in the light. For tests under dark conditions, lamps were gradually
dimmed over a period of thirty minutes to produce a ¢ondition with less than

1 X 1073 foot candles.

Testing Procedure

The treadmill, like the holding facilities, was supplied with unfiltered water
pumped from the Sacramento River. Test water conditions therefore approximated
those found in the river during each season. Mean temperature and secchi disc
measurements were 15.3 C (59.5 F) and 30.5 cm (12.0 in.), respectively during
chinook salmon tests in the spring, and 21.2 C (70.2 F) and 51.4 cm (20.2 in.)
in the summer when American shad were tested.

Immediately preceding a swimming test, fish were selected from the holding area
and placed in plastic buckets for introduction to the treadmill. Fish which
were diseased or obviously in poor physical condition were discarded. Tests
were not intended to differentiate the respomses-of fish according to size.
However, as fish were selected for a test, they were visually sorted into a

20 mm size range. Tests were replicated throughout the seasonal occurrence
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of a species to cover. the size range within the population. Salmon were tested
in groups of 100 fish, while twenty shad were used per test. An equivalent num-—
ber of fish was chosen for an accompanying control group to determine effects of
handling. This group was placed in the treadmill and immediately removed into a
holding area. American shad tests included an additional control group for hold-
ing effects. These groups were simply moved from one holding area to another.

Groups of fish were placed in the treadmill with test velocity conditions operating.
Release was accomplished by immersing the bucket and allow1ng fish to swim out.
Aside from a gradual reduction of light level for dark tests, no acclimation

period was allowed. |

Test duration was 6 h., Attempts were made to recordiswimming behavior throughout

the tests, but water turbidity and surface turbulence made consi
tions difficult. At the conclusion of the 6 h period, fish were
the treadmill, Those still swimming were considered to have sur
ditions, and were held for an additional 24 h at which time dela

tent observa-
recovered from
ived test con-
ed mortality

was recorded. All fish were measured to the nearest mm fork length (FL) at the

end of a test. N

(Steel and
elocity, and
ted to deter-

Results of 6 h survival were analyzed using a multiple regressio
Torrie 1960) for the relationship of approach velocity, passing
light conditions. Partial correlation coefficients were calcula
mine the relative importance of each test variable to survival,

Results of 24 h delayed mortality and test—end instantaneous mor
gressed on passing velocity for each approach velocity-light con
ferences between regressions for instantaneous and 24 h mortalit
by a test of the equality of slopes (Sokal and Rohlfi1969). Dat
analyses were in the form of arc sine transformat10n$ of percent
mortality.

ality were re-
ition. Dif-
were analyzed
used in the
swimming or

RESULTS

Chinook Salmon

Vertical Screen Tests

The vertical screen orientation was used to test 5,011 juvenile salmon ranging
in size from 30.0 to 89.0 mm (1.2 to 3.5 in.) FL, with a mean size of 51.6 mm
(2.0 in.) FL. Multiple regression for the relationship of light, approach
velocity, and passing velocity to sine_lfﬂz swimming at the end of a 6 h test,
accounted for 57% of the variation in survival. Partial correlations ranked
approach velocity (r = -0.7, p<0.05) and passing velocity (r = -0.4, p<0.05)
in respective order of their effect on salmon surv1val Light condition (r =
0.35, p>0.1) did not show a significant effect on survival.

Since light was not a significant factor in the ability of salmon to survive

6 h exposures|, the data for light and dark tests was averaged, and subsequently
analyzed for the multiple regression of approach and passing velocities on
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TABLE 1. Comparison between test—end instantaneous mortality and 24 h delayed
mortality of chinook salmon in sloped screen tests.
LIGHT TESTS
v v % Mortality
A P est End 24 h

3.0 1?.3 8; 8; sine—l’\/ % end mort.= 0.37 = 2.2 VP
17.4 0.5 1.5 . -1 = _
23.5 0.5 1.7 sine "V % 24 h mort.= 0.13 + 1.7 VP
28.9 1.0 2.5 F 4.97 p>0.1

6.1 4.9 0 . -1 = _
11.3 0 0 sine "% % end mort. 0.15 + 0.36 VP
17.4 1.0 1.0 . -1 3 _
23.5 0 0.5 sine % % 24 h mort. = .003 + 1.09 VP
28.9 0 1.4 F = 0.51 p>0.5

10.7 11{:2 0 5_)(5) gg sine—l'\/ 7% end mort. = .09 + 1.92 VP
17.4 .0 0.5 1.5 . =1 > _
23.5 1.5 0.5 sine v % 24 h mort, = .02 + 4,57 VP
28.9 0.5 1.4 F = 0.1 p>0.5

DARK TESTS

v v % Mortalify

A P est End 24 h

3.0 I?g 8 }_8 18 sine—l'\/ % end mort. = 0
17.4 0 1.5 1.5 .o-1 = -
23.5 0 1.0 1.0 sine V % 24 h mort. = .04 + 5,53 Vo
28.9 0 1.5 1.5 F =1.56 p>0.1

6.1 4.9 1.5 0.4 1.9 .l ——
11.3 1.0 0.2 1.2 sine ~V % end mort. = 0.2 + 11.5 VP
17.4 2.8 1.0 3.8 . -1 - _
23.5 9.4 0.5 2.9 sine "V % 24 h mort. = 0.8 + 2.83 VP
28.9 4.0 0.9 4.9 F = 0.24 p>0.5

10.7 4.9 0 . —1_\f7——————————- _ _
11.3 2.5 1.0 3.5 sine % end mort. = .63 0.29 VP
17.4 5.3 2.0 7.3 . -1 = _
235 5.5 ’1 7.6 sine "V % 24 h mort. = .42 =.0.56 Vo
28.9 8.1 3.9 2.0 F = 1.49 p20.1
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vival (r = -0.89, p<0.001) than was the effect of passing veloc-
, p<0.05).
of shad in vertical screen tests was analyzed to determine if mor-
ng during the 6 h test period.was different than that which occurred
E, as a result of delay effects. Regressions of 24 h mortality on
ty and regressions of test—end mortality on passing velocity were
homogenous at all approach velocities In light tests, and at V, =
ft/s) under dark conditioms. Comparison of the regression slopes
st—-end mortality for dark tests at approach veloiities of 6.1 and
and 0.35 ft/s), showed that delayed mortality varied significantly
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accounted for 82.57 of the variability in survival. Partial
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istically different under light conditiEns. A significant dif-
resent between 24 h and test-end results for dark tests, with higher
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t (Table 3).

DISCUSSION
1
of chinook salmon to the treadmill tests indicate that the species
sful in withstanding long term exposure to a fish screen under two-

vector flows within the range of velocities tested. More than 90% of the fish
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TABLE 2. Comparison between test—end instantaneous mortality and 24 h delayed
ﬂality of American shad in vertical screen tests.

mor

LIGHT TESTS

v v ; % Mortality
A P ﬂest End 24 h Total
3.0 1?'? 8 0007 0007 sine_l*v 7% end mort. = 0
17.4 0 2.6 2.6 . —1\/—7-—-———————— _
23.5 0 13.6 13.6 sine 2 24 h mort., 0.3 + 2.07 VP
28.9 | 0 0 0 F = 0.65 p>0.25
|
6.1 1‘1‘:3 B 1;:2 1;:2 sine” '/ % end mort. = .23 - 1.54 V,
17.4 0.3 17.4 17.7 . _1\f77*75—__—_-—' _
23.5 0.6 16.5 17.1 sine % 24 h mort. = .31 + 16,2 VP
28.9 | 0.7 19.2 19.9 F = 0.03 p>»0.5
i
10.7 1?:3 | 8 i:g i:g sine—1\/ % end mort. = .32 - 1.58 VP
17.4 1.3 4.3 5.6 . —lq/ﬁr‘—_—‘_—__—‘ _
23.5 1.5 6.5 8.0 sine % 24 h mort. = .52 + 6.07 VP
28.9 1.1 20.1 21.2 F = 0.39 p»0.5
DARK TESTS
v v ‘ % Mortality
A P Test End 24 h - Total
3.0 1?:2 165 g:g ;:; sine_I\/ % end mort. = ~.24 + 5.51 VP
17.4 0 5.2 5.2 . -lﬁ/-r-—-——————-* _
23.5 0 L6 L6 sine % 24 h mort. = .11 + 10.14 VP
28.9 | 0 5.4 5.4 F = 4,83 p<0.1
|
6.1 ] 4.9 3.8 0 3.8 . —-1,\/—;-—-— _
11.3 12.5 3.9 16.4 sine % end mort. = 1.05 + 7.36 VP
17.4 1 18.1 6.4 24,5 . -1 = _
23.5 ' 30.9 0 30.9 sine YV % 24 h mort. = .44 + 1,44 VP
28.9 - 34.8 10.8 45.6 F = 7.66 p<0.05
10.7 | 4.9 ] 22.0 11.5 | 33.5 . -1 ~
11.3 21.0 16.8 37.8 sine vV % end mort. = 1.04 + 19.21 VP
17.4 © 36.0 10.4 46,4 . =1 = _
23.5 412 17.2 58 4 sine "4 % 24 h mort., = .18 + 19.34 Vp
28.9 | 64,3 18.1 82.4 F = 9,87 p<0.05
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3. Comparison between test—end instantaneous mortality and 24 h delayed
mortality of American shad in sloped screen tests.

LIGHT TESTS
v v % Mortality
A P Test End 24 h Total

3.0 4.9 1.6 0 1.6 . -1 3 _
11.3 0.4 1.8 2.9 sine "V 7 end mort. = -.004 + 4,48 VP
17.4 1.6 0 1.6 . =1 p _
23.5 0.4 3.4 3.8 sine 4/ % 24 h mort. = .06 + 2.65 VP
28.9 1.7 0 1.7 F = 0.03 p>0.5

6.1 4.9 0 0.1 0.1 L =l ———— _
11.3 0.9 1.8 9.7 sine "% % end mort. = .43 3.04 VP
17.4 0 0 0 . -1 - _ _
23.5 0 3.3 3.3 sine "W % 24 h mort. = .52 1.67 VP
28.9 7.6 7.8 15.4 F = 0.04 p>0.5

10.7 4.9 1.6 0 1.6 . —1‘\/-7-———-—— _
11.3 1.6 1.8 3.4 sine % end mort. = .24 + 4.64 VP
17.4 1.6 0 1.6 . -1 o _
23.5 1.6 0 1.6 siné A/ % 24 h mort. = .14 + 0.81 VP
28.9 6.5 2.0 8.5 F = 0.13 p>0.5

DARK TESTS

v v % Mortality

A P Test End 24 h Total

3.0 4.9 0 0 0 . —1\/—,‘—-——- _ _
11.3 14.2 0 14.2 sine % end mort. = 1.85 4.23 VP
17.4 27.6 0 27.6 . ‘1‘fﬁr——-——————- _ _
3.5 33.6 2.7 36.3 sine % 24 h mort. = .46 4.16 VP
28.9 57.0 2.5 59.5 F = 19.41 p<0.01

6.1 4.9 22.5 4.5 27.0 . -1 = _
11.3 37.6 9.7 473 sine v A;end mort. = 1.49 + 18.84 VP
17.4 31.5 1.6 33.1 . —1_\/—0_— _
23.5 75 4 13.1 88.5 sine %2 24 h mort. = .32 + 10.37 VP
28.9 78.1 12.1 90.2 F = 5.65 p< 0.05

10.7 4.9 54.3 14,7 69.0 . -1 - _
11.3 57.5 0 57.5 sine v/ % end mort. = 1.78 + 33,23 VP
17.4 66.9 1.4 68.3 ] —1_\/—,—-——— _
23.5 98.9 1.1 100 sine %2 24 h mort. = ~-.46 + 16,22 VP
28.9 98.9 1.1 100 F = 13,06 p40.01
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tested were still swimming after 6 h, even with an aiproach velocity ofilO.? cm/s
(0.35 ft/s) and a passing velocity of 28.9 cm/s (0.95 ft/s). The difference be-
tween the two light levels tested (6.33 ft candles and 1 X 1073 ft candles) was
not a significant factor in determining the ability of salmon to survive with
both vertical and sloped screens. Swimming failure that did occur was related
to increases in velocity. ‘ !

|
In vertical screen tests the approach velocity had the predominant effect on sur-
vival. My results along the vertical screen are consistent with those reported
by Fisher (1981) for salmon swimming ability at single vector approach velocities
less than 12.2 cm/s (0.4 ft/s). He noticed that small salmon were able to 'rest"
on vertical retaining screens in his test chamber without damage resulting'in bet-
ter than 90% swimming performance. Salmon in the ‘treadmill were also observed
to withstand impingement on the vertical screen for short periods and swim off.
The presence of the passing velocity vector did not modify the "resting behavior."
In tests conducted with the sloped screen salmon werﬁ not observed on the screen
face under the water. Impinged fish were found at the top of the incline near the
water surface. The passing velocity was statistically the greater influence in
this series of tests. Its effect may have been to reduce the ability of salmon
to rest on the sloped screen, and may have forced them to the surface. Increased
mortality of chinook salmon at an inclined fish scre%n was observed by Coots (1956).

Mortality that occurred within 24 h after salmon were removed from test conditions
was less than 47%. In general, test effects seemed to carry over to the post-test
period with delayed mortality increasing with higher velocities. The resulting
mortality may be attributed to the latent effects of}impingement as wel} as veloc-
ity. \ ‘

|
|

American shad were able to survive two-vector flows for 6 h under lighted condi-
tions. Better than 98% of the fish were still swimming at the end of vertical
screen tests, and more than 92% along the sloped screen. The results reflect a
difference in their behavior from that demonstrated by salmon. While salmon can
survive impingement upon a screen, shad cannot withstand physical contact, but

avoid impingement through strong swimming ability. In the treadmill during

lighted tests, shad were seen maintaining a position centrally within the swim-
ming channel and oriented into the passing velocity vector. Even at higher pass-
ing velocities, upstream movement was observed. The survival of shad during

tests under darkened conditions was significantly loﬁer than for light tests.

The numbers of fish still swimming after 6 h decreased with increased velocities.

At the highest velocity combination, survival was only 35% for the vertical

screen tests, and almost complete failure was observed along the sloped screen.
Apparently, the species relies heavily on visual cues to maintain its school
formation and to avoid the fish screen (Fisher 1976,[1981). Reduction in light
produces a disorientation and a lowering in ability to endure increasing velocities.
In summary, chinook salmon could withstand long term exposure to screen approach
velocities as high as 10.7 cm/s (0.35 ft/s) and passing velocities of 28.9 cm/s
(0.95 ft/s) in both light and dark conditions. American shad showed the ability
to survive similar velocities, but only in the light. In dark tests, the survi-
val of shad greatly decreased with increased velocities. Design of a fish screen,
utilizing the upper limits of approach and passing vFlocities that I tested,
should attempt to minimize the length of time that fish are exposed to the screen.
Further testing would be required to determine respoPses to two-vector flows for
periods less than 6 h.
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