Kern County Water Agency
Improvement District 4
Water Quality Laboratory
Post Office Box 58
Bakersfield, California 93302-0058

Quality Assurance Manual

November 2011
Kern County Water Agency
Improvement District 4
Water Quality Laboratory

Quality Assurance Manual

This manual has been reviewed and determined to be appropriate for the scope, volume and range of analyses performed by the laboratory. This manual will be reviewed annually or more frequently as necessary. Periodic evaluations of laboratory operations will be conducted to insure that the quality control procedures and systems defined in the manual are fully implemented and adhered to at all times.

Paul Wagner
Laboratory Supervisor
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Assurance Program Objectives</td>
<td>1</td>
</tr>
<tr>
<td>Quality Assurance Terminology</td>
<td>1</td>
</tr>
<tr>
<td>Laboratory Personnel Qualifications</td>
<td>3</td>
</tr>
<tr>
<td>Laboratory Personnel Responsibilities</td>
<td>3</td>
</tr>
<tr>
<td>Water Quality Laboratory Supervisor</td>
<td>3</td>
</tr>
<tr>
<td>Water Quality Laboratory Analyst II</td>
<td>4</td>
</tr>
<tr>
<td>Water Quality Laboratory Analyst I</td>
<td>5</td>
</tr>
<tr>
<td>Laboratory Safety</td>
<td>6</td>
</tr>
<tr>
<td>Safety Practices</td>
<td>6</td>
</tr>
<tr>
<td>Inventory of Chemicals</td>
<td>6</td>
</tr>
<tr>
<td>Storage of Chemicals</td>
<td>6</td>
</tr>
<tr>
<td>Labeling of Chemical Containers</td>
<td>6</td>
</tr>
<tr>
<td>Material Safety Data Sheets</td>
<td>6</td>
</tr>
<tr>
<td>Laboratory Safety Meetings</td>
<td>6</td>
</tr>
<tr>
<td>Sampling Procedures</td>
<td>7</td>
</tr>
<tr>
<td>Inorganic Sample Collection and Storage Requirements</td>
<td>7</td>
</tr>
<tr>
<td>Organic Sample Collection and Storage Requirements</td>
<td>8</td>
</tr>
<tr>
<td>Asbestos, Bacteriological, and Radionuclide Sample Collection and Storage Requirements</td>
<td>8</td>
</tr>
<tr>
<td>Sample Containers</td>
<td>8</td>
</tr>
<tr>
<td>Sampling Quality Control Procedures</td>
<td>8</td>
</tr>
<tr>
<td>Chain of Custody</td>
<td>9</td>
</tr>
<tr>
<td>Analytical Procedures</td>
<td>9</td>
</tr>
<tr>
<td>Inorganic Nonmetallic Methods</td>
<td>9</td>
</tr>
<tr>
<td>Metal Methods</td>
<td>10</td>
</tr>
<tr>
<td>Microbiological Methods</td>
<td>10</td>
</tr>
<tr>
<td>Organic Methods</td>
<td>10</td>
</tr>
<tr>
<td>Physical Properties Methods</td>
<td>11</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>11</td>
</tr>
<tr>
<td>General Chemistry</td>
<td>11</td>
</tr>
<tr>
<td>Inorganic Chemistry</td>
<td>11</td>
</tr>
<tr>
<td>Metals</td>
<td>11</td>
</tr>
<tr>
<td>Microbiology</td>
<td>11</td>
</tr>
<tr>
<td>Organics</td>
<td>12</td>
</tr>
<tr>
<td>Physical Properties</td>
<td>12</td>
</tr>
<tr>
<td>Personnel Training</td>
<td>12</td>
</tr>
<tr>
<td>Manufacturers' Manuals</td>
<td>12</td>
</tr>
</tbody>
</table>
Table of Contents
(continued)

<table>
<thead>
<tr>
<th>Instrument Inspection, Calibration and Service</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration Procedures</td>
<td>13</td>
</tr>
<tr>
<td>Calibration Frequencies</td>
<td>14</td>
</tr>
<tr>
<td>Absorbance Monitoring</td>
<td>14</td>
</tr>
<tr>
<td>Instrument Service and Preventive Maintenance</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Internal Quality Control</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Control Samples and Parameters</td>
<td>14</td>
</tr>
<tr>
<td>Control Charts</td>
<td>16</td>
</tr>
<tr>
<td>Anion-Cation Balance</td>
<td>16</td>
</tr>
<tr>
<td>Conductivity</td>
<td>16</td>
</tr>
<tr>
<td>Ion Specific Electrodes</td>
<td>16</td>
</tr>
<tr>
<td>Microbiology</td>
<td>16</td>
</tr>
<tr>
<td>pH Electrodes</td>
<td>19</td>
</tr>
<tr>
<td>Pipettes-Adjustable</td>
<td>19</td>
</tr>
<tr>
<td>Thermometers</td>
<td>19</td>
</tr>
<tr>
<td>Turbidimeters</td>
<td>19</td>
</tr>
<tr>
<td>Apparatus and Reagent Quality Control Monitoring Schedule</td>
<td>19</td>
</tr>
<tr>
<td>Logbooks</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Reduction and Validation</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant Figures</td>
<td>21</td>
</tr>
<tr>
<td>Units</td>
<td>22</td>
</tr>
<tr>
<td>Data Reduction</td>
<td>22</td>
</tr>
<tr>
<td>Data Validation</td>
<td>22</td>
</tr>
</tbody>
</table>

| Reporting | 22 |

| Report and Record Archival | 23 |

<table>
<thead>
<tr>
<th>Performance and System Audits</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Check Samples</td>
<td>23</td>
</tr>
<tr>
<td>Laboratory Intercomparison Samples</td>
<td>23</td>
</tr>
<tr>
<td>Compliance Audits</td>
<td>23</td>
</tr>
<tr>
<td>Laboratory Quality Systems Audits</td>
<td>24</td>
</tr>
</tbody>
</table>

| Corrective Actions | 24 |

| Quality Assurance Reports | 24 |

| Traceability | 24 |

| Procurement | 24 |
Table Of Contents
(continued)

<table>
<thead>
<tr>
<th>Appendices</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title 22 Primary Standards - Bacteriological Quality</td>
<td>1</td>
</tr>
<tr>
<td>Title 22 Primary Standards - Inorganic Chemicals</td>
<td>2</td>
</tr>
<tr>
<td>Title 22 Primary Standards - Radioactivity</td>
<td>3</td>
</tr>
<tr>
<td>Title 22 Primary Standards - Organic Chemicals</td>
<td>4</td>
</tr>
<tr>
<td>Title 22 Secondary Drinking Water Standards</td>
<td>5</td>
</tr>
<tr>
<td>Title 22 Disinfectant Residuals, Disinfection Byproducts, and Disinfection Byproduct Precursors</td>
<td>6</td>
</tr>
<tr>
<td>Title 22 Primary Standards – Lead and Copper</td>
<td>7</td>
</tr>
<tr>
<td>California Department of Public Health Water Quality Monitoring Schedule</td>
<td>8</td>
</tr>
<tr>
<td>Laboratory Personnel Resumes</td>
<td>9</td>
</tr>
</tbody>
</table>
Quality Assurance Program Objectives

- Ensure that data produced by the Improvement District 4 Water Quality Laboratory is accurate and precise.
- Ensure that data produced by the Improvement District 4 Water Quality Laboratory is legally defensible.
- Ensure that the processes used by the Improvement District 4 Water Quality Laboratory to produce data are properly documented.
- Ensure that the Improvement District 4 Water Quality Laboratory is operating in accordance with federal, state and local regulations.

Quality Assurance Terminology

Terminology and definitions for quality control samples and parameters are located in the internal quality control section.

Accuracy
A combination of bias and precision of an analytical procedure which reflects the closeness of a measured value to a true value.

Bias
A consistent deviation of measured value from the true value caused by systemic errors in a procedure.

Calibration Standard
A solution containing a known concentration of method analytes, internal standard and surrogate analytes used to calibrate the instrument response with respect to the analyte concentrations in the standard.

Confidence Coefficient
The probability (percent) that a measurement result will lie within the confidence interval or between the confidence limits.

Confidence Interval
A set of possible values within which the true value will lie with a specified level of probability.

Confidence Limit
One of the boundary values defining the confidence interval.

Detection Limits
Instrumental Detection Level
The constituent concentration that produces a signal greater than five times the signal to noise ratio of the instrument. This is similar in many respects, to “Critical level” and “Criterion of detection.” The latter limit is stated as 1.645 times the standard deviation (SD) of blank analyses.

Lower level of detection
The constituent concentration in reagent water that produces a signal 2 x 1.645 x SD above the mean of blank analyses. This sets both type I and type II errors at 5%. Other names for this limit are “detection limit” and “limit of detection (LOD)."
Quality Assurance Terminology

Detection Limits (continued)
Method Detection Level
The constituent concentration that, when processed through the complete method, produces a
signal with a 99% probability that it is different from the blank. For seven replicates of the sample,
the mean must be $3.14 \times \text{SD}$ above the blank where SD is the standard deviation of the seven
replicates. The MDL will be larger than the LOD because of the few replications and the sample
processing steps, and may vary with constituent and matrix.

Limit of Quantification
The constituent concentration that produces a signal sufficiently greater than the blank that it can
be detected within specified limits by good laboratory practices during routine operations. Typically, it is the concentration that produces a signal $10 \times$ the SD above the reagent water blank
signal.

Precision
A measure of the degree of agreement among replicate analyses of a sample, usually expressed
as the standard deviation.

Quality assessment
A procedure for determining the quality of laboratory measurements by use of data from internal
and external quality control measures.

Quality assurance
A definitive plan for laboratory operations that specifies the measures used to produce data of
known precision and bias.

Quality control
A set of measures within a sample analysis methodology to assure that the process is in control.

Random error
The deviation in any step in an analytical procedure that can be treated by standard statistical
techniques.

Relative Standard Deviation
Standard Deviation, $\frac{\sigma}{\text{Average X} 100}$

Standard curve
A series of three or more standards or standard mixes containing the analyte(s) of interest. Each
standard (mix) is run at different concentrations, from at or near the MDL to a higher level to
bracket the expected concentration of the sample analyte. The resulting data generates a
mathematical means for the quantification of the analyte in the samples.

Type I error
The probability of deciding a constituent is present when it actually is absent. Type I errors are
also known as alpha errors.

Type II error
The probability of not detecting a constituent when it actually is present. Type II errors are also
known as beta errors.
Laboratory Personnel Qualifications

Water Quality Laboratory Supervisor
1. Education and experience equivalent to a bachelor’s degree in physical or natural sciences with coursework in analytical chemistry, microbiology, organic chemistry, and statistics.
2. A minimum of five years experience as a laboratory analyst in a water/wastewater laboratory.
3. Possession of a valid California Driver’s license.
4. Possession of the CA/NV Section of the American Water Works Association (AWWA) Water Quality Analyst Grade 4 Certificate, or the ability to obtain the certification within 24 months.

Water Quality Laboratory Analyst II
1. Possession of an AA or AS in chemistry, biology, physics, engineering or closely related field of equivalent course of study to provide the required knowledge, skills and abilities to perform the essential functions of the job.
2. Two years experience analyzing samples in a laboratory setting.
3. Possession of a valid California Driver’s license.

Water Quality Laboratory Analyst I
1. Possession of an AA or AS in chemistry, biology, physics, engineering or closely related field of equivalent course of study; or completion of two (2) years relevant course work and associated laboratory experience to provide the required knowledge, skills and abilities to perform the essential functions of the job.
2. One year of experience analyzing samples in a laboratory setting preferred.
3. Possession of a valid California Driver’s license.
4. Possession of the CA/NV Section of the American Water Works Association (AWWA) Water Quality Analyst Grade 1 certification, or the ability to obtain one within 12 months of employment.

Resumes for the Water Quality Laboratory Supervisor and Water Quality Laboratory Analysts are appended. An organizational chart is also included in the appendix.

Laboratory Personnel Responsibilities

Water Quality Laboratory Supervisor
1. Ensure that data produced by the laboratory is accurate, precise and legally defensible.
2. Ensure that the processes used by the laboratory to produce data are properly documented.
3. Ensure that the laboratory is operated in accordance with federal, state and local regulations.
4. Plan, schedule and organize laboratory tasks.
5. Train and supervise laboratory technicians.
6. Institute additional analytical procedures as necessary.
7. Analyze inorganic, organic and physical samples using instrumentation and associated methods including, but not limited to, atomic absorption, gas chromatography, ion chromatography, ion selective electrodes, mass spectrometry (GC/MS), pH meter, total organic carbon analyzer, spectrophotometer and various bench and titration analyses.
8. Analyze microbiology samples using instruments and associated methods including, but not limited to, the autoclave, balances, colony counter, incubator bath, incubators, pH meter, stir/hot plate, tray sealer and UV sterilizer.
9. Perform sample preparation procedures including, but not limited to, the addition of preservation reagents, organic sample extractions and metal sample digestions.
10. Collect samples as needed from locations associated with, but not limited to, the Cross Valley Canal, distribution system, sanitary surveys, source water, treated water, treatment plant and wells.
Laboratory Personnel Responsibilities

Water Quality Laboratory Supervisor (continued)

11. Perform quality control procedures for, but not limited to, the autoclave, balances, conductivity meter, electrodes, microbiology control cultures and media, pH meter, reagents, titrants and turbidimeters.
12. Maintain all relevant quality control logs including, but not limited to, those associated with instrument temperature, reagent quality control and preparation, chain of custody, standard preparation, instrument maintenance, instrument performance checks and microbial procedures.
13. Prepare reagents, titrants, microbiology media, and other compounds, solutions and items as directed.
14. Prepare reports regarding, but not limited to, analysis summary, quality control samples, purveyor sample analysis and reports submitted for compliance purposes.
15. Maintain the inventory of all laboratory supplies and order as necessary.
16. Wash and clean laboratory bottles, containers, glassware and other items. Clean laboratory benches, cabinets, instruments, shelves, sinks and other items.
17. Perform duties relevant to water quality issues as directed.

Water Quality Laboratory Analyst II

1. Analyze inorganic, organic and physical samples using instrumentation and associated methods including, but not limited to, atomic absorption, gas chromatography, ion chromatography, ion selective electrodes, mass spectrometry (GC/MS), pH meter, total organic carbon analyzer, spectrophotometer and various bench and titration analyses.
2. Analyze microbiology samples using instruments and associated methods including, but not limited to, the autoclave, balances, colony counter, incubator bath, incubators, pH meter, stir/hot plate, tray sealer and UV sterilizer.
3. Prepare sample preparation procedures including, but not limited to, the addition of preservation reagents, organic sample extractions and metal sample digestions.
4. Collect samples as needed from locations associated with, but not limited to, the Cross Valley Canal, distribution system, sanitary surveys, source water, treated water, treatment plant and wells.
5. Perform quality control procedures for, but not limited to, the autoclave, balances, conductivity meter, electrodes, microbiology control cultures and media, pH meter, reagents, titrants and turbidimeters.
6. Maintain all relevant quality control logs including, but not limited to, those associated with instrument temperature, reagent quality control and preparation, chain of custody, standard preparation, instrument maintenance, instrument performance checks and microbial procedures.
7. Prepare reagents, titrants, microbiology media, and other compounds, solutions and items as directed.
8. Prepare reports regarding, but not limited to, analysis summary, quality control samples, purveyor sample analysis and reports submitted for compliance purposes.
9. Maintain the inventory of all laboratory supplies and order as necessary.
10. Wash and clean laboratory bottles, containers, glassware and other items as directed. Clean laboratory benches, cabinets, instruments, shelves, sinks and other items as directed.
11. Perform duties relevant to water quality issues as directed.
Laboratory Personnel Responsibilities

Water Quality Analyst I
1. Analyze inorganic, organic and physical samples using instrumentation and associated methods including, but not limited to, atomic absorption, gas chromatography, ion chromatography, ion selective electrodes, pH meter, total organic carbon analyzer, spectrophotometer and various bench and titration analyses.
2. Analyze microbiology samples using instruments and associated methods including, but not limited to, the autoclave, balances, colony counter, incubator bath, incubators, pH meter, stir/hot plate, tray sealer and UV sterilizer.
3. Perform sample preparation procedures including, but not limited to, the addition of preservation reagents, organic sample extractions and metal sample digestions.
4. Collect samples as needed from locations associated with, but not limited to, the Cross Valley Canal, distribution system, sanitary surveys, source water, treated water, treatment plant and wells.
5. Perform quality control procedures for, but not limited to, the autoclave, balances, conductivity meter, electrodes, microbiology control cultures and media, pH meter, reagents, titrants and turbidimeters.
6. Maintain all relevant quality control logs including, but not limited to, those associated with instrument temperature, reagent quality control and preparation, chain of custody, standard preparation, instrument maintenance, instrument performance checks and microbial procedures.
7. Prepare reagents, titrants, microbiology media, and other compounds, solutions and items as directed.
8. Prepare reports regarding, but not limited to, analysis summary, quality control samples, purveyor sample analysis and reports submitted for compliance purposes.
9. Maintain the inventory of all laboratory supplies and order as necessary.
10. Wash and clean laboratory bottles, containers, glassware and other items as directed. Clean laboratory benches, cabinets, instruments, shelves, sinks and other items as directed.
11. Perform duties relevant to water quality issues as directed.
Laboratory Safety

Safety Practices

- Concentrated acids and bases will only be handled in the fume hood.
- Safety glasses and chemical resistant gloves will be worn when handling acids, bases and reagents of any concentration.
- Chemicals from unlabeled or ambiguously labeled containers will not be used.
- Chemicals will not be tasted. Chemicals will only be smelled when absolutely necessary by cautiously wafting the vapor toward the nose while keeping the container away from the face.
- Analysts will not work alone when handling hazardous substances.
- Analysts will read the container warning label and MSDS of each chemical used in all analyses they perform.
- Hands and arms will be washed before leaving the work area and whenever a chemical contacts the skin. Hands will be sprayed with 70% ETOH after working with bacteria samples.
- Contact lenses will not be worn in the laboratory at any time.
- Long hair and loose fitting clothing will be restrained.
- Shorts, high-heeled shoes, open-toed shoes, sandals and shoes made of woven material will not be worn.
- Analysts will not eat, drink, smoke, take medication or apply cosmetics in chemical handling or storage areas.
- Analysts will not engage in horseplay, pranks and other acts of mischief in the laboratory.

Inventory of Chemicals

Chemical volumes and concentrations will be ordered and maintained at the lowest practical level. Volumes and concentrations will be limited to minimize the amount of expired chemicals, exposure of personnel to hazardous chemicals and the potential of contamination.

Storage of Chemicals

Acids, bases, and strong oxidizers will be isolated from each other and all other compounds in storage. Volatile organic solvents will be stored in the fume hood or explosion proof refrigerator. Organic and inorganic non-metal standards will also be stored in explosion proof refrigerators.

Labeling Chemical Containers

All chemical containers will be clearly labeled. Reagents prepared in the laboratory will be stored in containers labeled with the chemical name, concentration and preparation date.

Material Safety Data Sheets

Material safety data sheets (MSDS) will be maintained for each chemical used. The material safety data sheets will be stored in three ring loose-leaf binders in the laboratory. Information on the properties of chemicals can also be found on the Internet.

Safety Meetings

Safety meetings involving all treatment plant personnel will be held every two weeks. The meetings will focus on a wide range of safety topics related to the laboratory and treatment plant. A record of the meetings shall be kept in a three ring loose-leaf binder by the treatment plant safety officer.
Sampling Procedures

All samples shall be collected as specified in the following inorganic, organic, and miscellaneous sample collection and storage requirement tables.

Inorganic Sample Collection and Storage Requirements

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Container</th>
<th>Volume, mL</th>
<th>Preservative</th>
<th>Storage Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>alkalinity</td>
<td>P, G</td>
<td>200</td>
<td>None, 4°C</td>
<td>14 days</td>
</tr>
<tr>
<td>aluminum</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>ammonia</td>
<td>P, G</td>
<td>500</td>
<td>H₂SO₄ < 2, 4°C</td>
<td>28 days</td>
</tr>
<tr>
<td>antimony</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>arsenic</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>barium</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>beryllium</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>bicarbonate</td>
<td>P, G</td>
<td>500</td>
<td>none, 4°C</td>
<td>6 months</td>
</tr>
<tr>
<td>boron</td>
<td>P, PTFE cap</td>
<td>1000</td>
<td>none</td>
<td>6 months</td>
</tr>
<tr>
<td>bromide</td>
<td>P, G</td>
<td>100</td>
<td>none</td>
<td>28 days</td>
</tr>
<tr>
<td>cadmium</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>calcium</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>carbonate</td>
<td>P, G</td>
<td>500</td>
<td>none, 4°C</td>
<td>6 months</td>
</tr>
<tr>
<td>chloride</td>
<td>P, G</td>
<td>50</td>
<td>none</td>
<td>28 days</td>
</tr>
<tr>
<td>chlorine</td>
<td>P, G</td>
<td>500</td>
<td>none</td>
<td>15 minutes</td>
</tr>
<tr>
<td>chromium VI</td>
<td>P, G</td>
<td>1000</td>
<td>none, 4°C</td>
<td>24 hours</td>
</tr>
<tr>
<td>chromium, total</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>cobalt</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>color</td>
<td>P, G</td>
<td>1000</td>
<td>none, 4°C</td>
<td>48 hours</td>
</tr>
<tr>
<td>conductivity</td>
<td>P, G</td>
<td>500</td>
<td>none, 4°C</td>
<td>28 days</td>
</tr>
<tr>
<td>copper</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>cyanide, total</td>
<td>P, G</td>
<td>1000</td>
<td>NaOH, pH > 12, 4°C</td>
<td>14 days, 24 hours if sulfide present</td>
</tr>
<tr>
<td>fluoride</td>
<td>P</td>
<td>100</td>
<td>none</td>
<td>28 days</td>
</tr>
<tr>
<td>hardness</td>
<td>P, G</td>
<td>100</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>iron</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>lead</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>magnesium</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>manganese</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>mercury</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>28 days</td>
</tr>
<tr>
<td>molybdenum</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>nickel</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>nitrate</td>
<td>P, G</td>
<td>100</td>
<td>none, 4°C</td>
<td>48 hours, 28 days if chlorinated</td>
</tr>
<tr>
<td>nitrite</td>
<td>P, G</td>
<td>200</td>
<td>none, 4°C</td>
<td>48 hours</td>
</tr>
<tr>
<td>odor</td>
<td>G</td>
<td>500</td>
<td>none, 4°C</td>
<td>6 hours</td>
</tr>
<tr>
<td>oxygen, dissolved</td>
<td>G, BOD bottle</td>
<td>300</td>
<td>none</td>
<td>8 hours</td>
</tr>
<tr>
<td>perchlorate</td>
<td>P, G</td>
<td>250</td>
<td>none, 4°C</td>
<td>28 days</td>
</tr>
<tr>
<td>pH</td>
<td>P, G</td>
<td>50</td>
<td>none</td>
<td>15 minutes</td>
</tr>
<tr>
<td>phosphate, ortho</td>
<td>G (A)</td>
<td>100</td>
<td>none, 4°C</td>
<td>48 hours</td>
</tr>
<tr>
<td>potassium</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>selenium</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>silica</td>
<td>P, PTFE cap</td>
<td>200</td>
<td>none, 4°C</td>
<td>28 days</td>
</tr>
<tr>
<td>silver</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>sodium</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>solids</td>
<td>P, G</td>
<td>200</td>
<td>none, 4°C</td>
<td>7 days</td>
</tr>
<tr>
<td>sulfate</td>
<td>P, G</td>
<td>100</td>
<td>none, 4°C</td>
<td>28 days</td>
</tr>
<tr>
<td>surfactants (MBAS)</td>
<td>P, G</td>
<td>250</td>
<td>none, 4°C</td>
<td>6 months</td>
</tr>
<tr>
<td>temperature</td>
<td>P, G</td>
<td>none</td>
<td>none, 4°C</td>
<td>15 minutes</td>
</tr>
<tr>
<td>turbidity</td>
<td>P, G</td>
<td>100</td>
<td>none, 4°C</td>
<td>24 hours</td>
</tr>
<tr>
<td>thallium</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>vanadium</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
<tr>
<td>zinc</td>
<td>P, G</td>
<td>1000</td>
<td>HNO₃, pH < 2</td>
<td>6 months</td>
</tr>
</tbody>
</table>
Sampling Procedures

Organic Sample Collection and Storage Requirements

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Container</th>
<th>Volume, mL</th>
<th>Preservative</th>
<th>Storage Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 502.2</td>
<td>G</td>
<td>2 X 40 VOC</td>
<td>25 mg ascorbic acid if chlorinated, HCl, pH < 2, 4°C</td>
<td>14 days</td>
</tr>
<tr>
<td>EPA 504</td>
<td>G</td>
<td>2 X 250</td>
<td>Na₂S₂O₃, 4°C</td>
<td>28 days</td>
</tr>
<tr>
<td>EPA 505</td>
<td>G</td>
<td>1000</td>
<td>none, 4°C</td>
<td>7 days</td>
</tr>
<tr>
<td>EPA 507</td>
<td>G</td>
<td>1000</td>
<td>none, 4°C</td>
<td>7 days</td>
</tr>
<tr>
<td>EPA 508</td>
<td>G</td>
<td>1000</td>
<td>none, 4°C</td>
<td>7 days</td>
</tr>
<tr>
<td>EPA 515.1</td>
<td>G</td>
<td>1000</td>
<td>none, 4°C</td>
<td>7 days</td>
</tr>
<tr>
<td>EPA 524.2</td>
<td>G</td>
<td>2 X 40 VOC</td>
<td>25 mg ascorbic acid if chlorinated, HCl, pH < 2, 4°C</td>
<td>14 days</td>
</tr>
<tr>
<td>EPA 525</td>
<td>G</td>
<td>1000</td>
<td>none, 4°C</td>
<td>7 days</td>
</tr>
<tr>
<td>EPA 531</td>
<td>G, amber</td>
<td>250</td>
<td>chloroacetic buffer/Na₂S₂O₃, 4°C</td>
<td>7 days</td>
</tr>
<tr>
<td>EPA 547</td>
<td>G, amber</td>
<td>250</td>
<td>Na₂S₂O₃, 4°C</td>
<td>7 days</td>
</tr>
<tr>
<td>EPA 548.1</td>
<td>G</td>
<td>1000</td>
<td>Na₂S₂O₃, 4°C</td>
<td>7 days</td>
</tr>
<tr>
<td>EPA 549</td>
<td>P, amber</td>
<td>1000</td>
<td>Na₂S₂O₃, 4°C</td>
<td>7 days</td>
</tr>
<tr>
<td>EPA 550.1</td>
<td>G</td>
<td>1000</td>
<td>none, 4°C</td>
<td>7 days</td>
</tr>
<tr>
<td>EPA 551</td>
<td>G</td>
<td>4 X 40 VOC</td>
<td>0.1 mL NH₄Cl, HCl, pH 4.5, 4°C</td>
<td>14 days</td>
</tr>
<tr>
<td>EPA 552</td>
<td>G</td>
<td>250</td>
<td>0.25 mL NH₄Cl, 4°C</td>
<td>28 days</td>
</tr>
<tr>
<td>EPA 632</td>
<td>G</td>
<td>1000</td>
<td>none, 4°C</td>
<td>7 days</td>
</tr>
<tr>
<td>carbon, total</td>
<td>G, amber</td>
<td>2 X 40 VOC</td>
<td>H₂SO₄, pH < 2, 4°C</td>
<td>28 days</td>
</tr>
<tr>
<td>organic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dioxin</td>
<td>P, G</td>
<td>2 X 1000</td>
<td>Na₂S₂O₃, 4°C</td>
<td>30 days</td>
</tr>
<tr>
<td>oil and grease</td>
<td>G(wide), amber</td>
<td>1000</td>
<td>H₂SO₄, pH < 2, 4°C</td>
<td>28 days</td>
</tr>
<tr>
<td>phenols</td>
<td>P, G PTFE cap</td>
<td>500</td>
<td>H₂SO₄, pH < 2, 4°C</td>
<td>28 days</td>
</tr>
</tbody>
</table>

Asbestos, Bacteriological, and Radionuclide Sample Collection and Storage Requirements

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Container</th>
<th>Volume, mL</th>
<th>Preservative</th>
<th>Storage Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>asbestos</td>
<td>P, G</td>
<td>1000</td>
<td>none, 4°C</td>
<td>48 hours</td>
</tr>
<tr>
<td>bacteriological</td>
<td>P, G sterile</td>
<td>100</td>
<td>Na₂S₂O₃, 4°C</td>
<td>8 hours</td>
</tr>
<tr>
<td>radionuclides</td>
<td>P</td>
<td>1000/analyte</td>
<td>none, 4°C</td>
<td>6 months</td>
</tr>
</tbody>
</table>

Sample Containers

Bacteriological: Clean, sterile, 125 mL wide mouth polypropylene bottles
Metals: Clean, acid-rinsed, amber, borosilicate or polypropylene containers with TFE closures.
Mineral and Physical: Clean, amber, borosilicate glass or polypropylene bottles with TFE closures.
Purgeable VOC’s: 40 mL amber, borosilicate vials with new TFE faced silicon septa
Non-purgeable Organics: Clean, amber, glass containers with new TFE closures.

Sampling Quality Control Procedures

Field reagent blanks will accompany all volatile organic chemical samples collected in the field and will be carried through the entire sampling, storage, and laboratory procedure for all analyses. All sample preservatives will be added to the field reagent blanks prior to sample collection.

Duplicate samples will be collected and analyzed to determine the precision associated with sample collection, preservation, storage and laboratory procedure.
Sampling Procedures

Chain of Custody
All sample containers will be numbered and the number will correspond to specific locations as listed in the site-sampling plan. When samples are collected from locations other than those listed in the site-sampling plan, the container will be numbered and labeled with the following information:
- Sample location – address or location at which the sample is taken.
- Sample source – source water description.
- Time and date sample is collected.
- Name of the sample collector.

The chain of custody will receive a laboratory number that will be recorded in the chain of custody logbook along with the date and time the samples were received by the laboratory. A copy of the results will be attached to the chain of custody and the chain of custody will be filed in chronological order.

Analytical Procedures

Methods
The Kern County Water Agency (KCWA), Improvement District 4 (ID4), Water Quality Laboratory primarily utilizes analytical methods published in *Standard Methods, 20th edition* (SM) and by the Environmental Protection Agency (EPA). All samples analyzed for compliance purposes will utilize methods approved by the Environmental Laboratory Accreditation Program. The analytes and associated analysis methods are listed in the tables below.

Inorganic Nonmetallic Methods

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity</td>
<td>SM 2320 B</td>
</tr>
<tr>
<td>Ammonia</td>
<td>SM 4500-NH3 F</td>
</tr>
<tr>
<td>Bromide</td>
<td>EPA 300.0</td>
</tr>
<tr>
<td>Chlorate</td>
<td>EPA 300.0</td>
</tr>
<tr>
<td>Chloride</td>
<td>EPA 300.0</td>
</tr>
<tr>
<td>Chlorite</td>
<td>EPA 300.0</td>
</tr>
<tr>
<td>Chlorine</td>
<td>SM 4500-Cl G</td>
</tr>
<tr>
<td>Dissolved oxygen</td>
<td>SM 4500-O G</td>
</tr>
<tr>
<td>Fluoride</td>
<td>SM 4110 B, SM 4500-F C</td>
</tr>
<tr>
<td>Hardness</td>
<td>SM 2340 C</td>
</tr>
<tr>
<td>Nitrate</td>
<td>EPA 300.0</td>
</tr>
<tr>
<td>Nitrite</td>
<td>EPA 300.0</td>
</tr>
<tr>
<td>Phosphate</td>
<td>EPA 300.0</td>
</tr>
<tr>
<td>Silica</td>
<td>SM 4500-Si D</td>
</tr>
<tr>
<td>Sulfate</td>
<td>EPA 300.0</td>
</tr>
</tbody>
</table>
Analytical Procedures

Metal Methods

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>EPA 200.9</td>
</tr>
<tr>
<td>Antimony</td>
<td>SM 3113 B</td>
</tr>
<tr>
<td>Arsenic</td>
<td>SM 3113 B</td>
</tr>
<tr>
<td>Barium</td>
<td>SM 3113 B</td>
</tr>
<tr>
<td>Beryllium</td>
<td>SM 3113 B</td>
</tr>
<tr>
<td>Cadmium</td>
<td>SM 3113 B</td>
</tr>
<tr>
<td>Calcium</td>
<td>SM 3111 D</td>
</tr>
<tr>
<td>Chromium</td>
<td>SM 3113 B</td>
</tr>
<tr>
<td>Copper</td>
<td>SM 3111 B</td>
</tr>
<tr>
<td>Iron</td>
<td>SM 3111 B</td>
</tr>
<tr>
<td>Lead</td>
<td>SM 3113 B</td>
</tr>
<tr>
<td>Magnesium</td>
<td>SM 3111 B</td>
</tr>
<tr>
<td>Manganese</td>
<td>SM 3111 B</td>
</tr>
<tr>
<td>Mercury</td>
<td>SM 3112 B</td>
</tr>
<tr>
<td>Nickel</td>
<td>SM 3113 B</td>
</tr>
<tr>
<td>Potassium</td>
<td>SM 3111 B</td>
</tr>
<tr>
<td>Selenium</td>
<td>SM 3113 B</td>
</tr>
<tr>
<td>Silver</td>
<td>SM 3113 B</td>
</tr>
<tr>
<td>Sodium</td>
<td>SM 3111 B</td>
</tr>
<tr>
<td>Thallium</td>
<td>EPA 200.9</td>
</tr>
<tr>
<td>Zinc</td>
<td>SM 3111 B</td>
</tr>
</tbody>
</table>

Microbiological Methods

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total coliform</td>
<td>SM 9221 A, B, C; SM 9222 A, B, C; SM 9223</td>
</tr>
<tr>
<td>Fecal coliform</td>
<td>SM 9221 A, B, E; SM 9222 D</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>SM 9221 A, B, C; SM 9222 A, B, C; SM 9223</td>
</tr>
<tr>
<td>Heterotrophic bacteria</td>
<td>SM 9215 B</td>
</tr>
<tr>
<td>Biochemical identification</td>
<td>API 20E</td>
</tr>
</tbody>
</table>

Organic Methods

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBCP/EDB</td>
<td>EPA 504.1</td>
</tr>
<tr>
<td>Haloacetic acids</td>
<td>EPA 552.3</td>
</tr>
<tr>
<td>Organochloride Pesticides & PCBs</td>
<td>EPA 505</td>
</tr>
<tr>
<td>Trihalomethanes</td>
<td>EPA 524.2</td>
</tr>
<tr>
<td>Total organic carbon</td>
<td>SM 5310 C</td>
</tr>
<tr>
<td>Dissolved organic carbon</td>
<td>SM 5310 C</td>
</tr>
<tr>
<td>UV254</td>
<td>SM 5910 B</td>
</tr>
<tr>
<td>Volatile organic chemicals</td>
<td>EPA 524.2</td>
</tr>
</tbody>
</table>
Analytical Procedures

Physical Properties Methods

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>SM 2120 B</td>
</tr>
<tr>
<td>Conductivity</td>
<td>SM 2510 B</td>
</tr>
<tr>
<td>Corrosivity</td>
<td>SM 2330 B</td>
</tr>
<tr>
<td>Odor</td>
<td>SM 2150 B</td>
</tr>
<tr>
<td>pH</td>
<td>SM 4500-H⁺ B</td>
</tr>
<tr>
<td>Temperature</td>
<td>SM 2550 B</td>
</tr>
<tr>
<td>Suspended solids</td>
<td>SM 2540 D</td>
</tr>
<tr>
<td>Total dissolved solids</td>
<td>SM 2540 C</td>
</tr>
<tr>
<td>Total solids</td>
<td>SM 2540 B</td>
</tr>
<tr>
<td>Turbidity</td>
<td>SM 2130 B</td>
</tr>
</tbody>
</table>

Samples requiring analyses not performed by the KCWA ID4 Water Quality Laboratory will be contracted out to laboratories certified by the California Department of Public Health (CDPH).

Instrumentation

General Chemistry

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>balance – analytical</td>
<td>Mettler</td>
<td>AE 260</td>
</tr>
<tr>
<td>balance – top loading</td>
<td>Mettler</td>
<td>BB2440</td>
</tr>
<tr>
<td>stir plate</td>
<td>Corning</td>
<td>PC 210</td>
</tr>
<tr>
<td>stir plate with light</td>
<td>Thermolyne</td>
<td>7200</td>
</tr>
<tr>
<td>water bath</td>
<td>Blue</td>
<td>WB1120A</td>
</tr>
</tbody>
</table>

Inorganic Nonmetallic

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>ion chromatograph</td>
<td>Dionex</td>
<td>DX600</td>
</tr>
<tr>
<td>pH/ion selective meter</td>
<td>Orion</td>
<td>720A</td>
</tr>
<tr>
<td>spectrophotometer – chlorine</td>
<td>Hach</td>
<td>Pocket Colorimeter</td>
</tr>
<tr>
<td>spectrophotometer – UV/Vis</td>
<td>Hach</td>
<td>DR4000U</td>
</tr>
</tbody>
</table>

Metals

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>atomic absorption spectrometer</td>
<td>Perkin – Elmer</td>
<td>AAnalyst800</td>
</tr>
<tr>
<td>flow injection mercury system</td>
<td>Perkin – Elmer</td>
<td>FIMS 400</td>
</tr>
<tr>
<td>water bath</td>
<td>Blue</td>
<td>WB1120A</td>
</tr>
</tbody>
</table>
Instrumentation

Microbiology

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>autoclave</td>
<td>Market Forge</td>
<td>Sterilmatic</td>
</tr>
<tr>
<td>colony counter</td>
<td>Darkfield Quebec</td>
<td>3325</td>
</tr>
<tr>
<td>hot/stir plate</td>
<td>Corning</td>
<td>PC 520</td>
</tr>
<tr>
<td>hot/stir plate</td>
<td>VWR</td>
<td>630 Standard</td>
</tr>
<tr>
<td>incubator – fecal coliform</td>
<td>Thermolyne</td>
<td>37900</td>
</tr>
<tr>
<td>incubator – total coliform</td>
<td>VWR</td>
<td>3015</td>
</tr>
<tr>
<td>microscope – binocular</td>
<td>Spencer</td>
<td>-</td>
</tr>
<tr>
<td>microscope – dissecting</td>
<td>Spencer</td>
<td>-</td>
</tr>
<tr>
<td>oven – hot air sterilizing</td>
<td>VWR</td>
<td>1325F</td>
</tr>
<tr>
<td>sealer – Quantitray</td>
<td>IDEXX</td>
<td>2X</td>
</tr>
<tr>
<td>sterilizer – UV</td>
<td>Millipore</td>
<td>-</td>
</tr>
<tr>
<td>UV lamp</td>
<td>Spectroline</td>
<td>EA160</td>
</tr>
<tr>
<td>water bath</td>
<td>Precision Scientific</td>
<td>66885</td>
</tr>
</tbody>
</table>

Organics

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto sampler – GC/MS</td>
<td>Varian</td>
<td>Archon</td>
</tr>
<tr>
<td>auto sampler – GC/MS</td>
<td>CTC Analytics</td>
<td>CombiPal</td>
</tr>
<tr>
<td>gas chromatograph</td>
<td>Varian</td>
<td>3800</td>
</tr>
<tr>
<td>mass spectrometer</td>
<td>Varian</td>
<td>Saturn 2000</td>
</tr>
<tr>
<td>sample concentrator – GC/MS</td>
<td>Tekmar Dohrman</td>
<td>3100</td>
</tr>
<tr>
<td>total organic carbon analyzer</td>
<td>Tekmar Dohrman</td>
<td>Phoenix 8000</td>
</tr>
<tr>
<td>muffle furnace</td>
<td>Thermolyne</td>
<td>1400</td>
</tr>
</tbody>
</table>

Physical Properties

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>conductivity meter</td>
<td>Orion</td>
<td>153A</td>
</tr>
<tr>
<td>color comparator</td>
<td>Hellige</td>
<td>611-A</td>
</tr>
<tr>
<td>turbidimeter</td>
<td>Hach</td>
<td>2100AN</td>
</tr>
</tbody>
</table>

Personnel Training

Laboratory staff will be trained on each instrument by the installer. Additional training at the manufacturer’s school will be provided on some instruments to staff who will then train other laboratory employees.

Manufacturer’s Manuals

The manufacturer’s manuals will be used for training and reference, and will be kept in the laboratory library.
Instrument Inspection, Calibration and Service

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Inspection</th>
<th>Calibration</th>
<th>Service Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>atomic absorption spectrometer</td>
<td>each use</td>
<td>each use</td>
<td>as needed</td>
</tr>
<tr>
<td>autoclave</td>
<td>each use</td>
<td>each use</td>
<td>as needed</td>
</tr>
<tr>
<td>balance – analytical</td>
<td>each use</td>
<td>quarterly</td>
<td>annually</td>
</tr>
<tr>
<td>balance – top loading</td>
<td>each use</td>
<td>quarterly</td>
<td>annually</td>
</tr>
<tr>
<td>gas chromatograph</td>
<td>each use</td>
<td>each use</td>
<td>as needed</td>
</tr>
<tr>
<td>incubators</td>
<td>daily</td>
<td>twice daily</td>
<td>as needed</td>
</tr>
<tr>
<td>ion chromatograph</td>
<td>each use</td>
<td>each use</td>
<td>as needed</td>
</tr>
<tr>
<td>mass spectrometer</td>
<td>each use</td>
<td>each use</td>
<td>as needed</td>
</tr>
<tr>
<td>ovens</td>
<td>each use</td>
<td>quarterly</td>
<td>as needed</td>
</tr>
<tr>
<td>pH/ion selective meter</td>
<td>each use</td>
<td>each use</td>
<td>monthly</td>
</tr>
<tr>
<td>spectrophotometer – UV/Vis</td>
<td>each use</td>
<td>each use</td>
<td>as needed</td>
</tr>
<tr>
<td>total organic carbon analyzer</td>
<td>each use</td>
<td>each use</td>
<td>as needed</td>
</tr>
</tbody>
</table>

*Continuing calibration checks (CCCs) will be analyzed to determine if an instrument requires recalibration.

Calibration Procedures

Atomic Absorption Spectrometer
The direct concentration calibration method will be used whenever possible. Standard addition calibration will be used for some graphite furnace analyses when matrix effects or background indicate a need. All calibration curves will consist of three to five standards, depending on the analysis method requirement. The calibration standards will bracket the expected analyte concentration. If the sample concentration is below the detection limit, the lowest calibration standard should be at the DLR.

Gas Chromatograph
Internal and external standard calibration methods with three to five standards will be used, depending upon the analysis method requirement. The lowest standard must approach the method detection limit.

Gas Chromatograph/Mass Spectrometer with Purge and Trap
The internal standard calibration method with five standards will be used. The instrument must pass the BFB tuning procedure before the analysis of the calibration standards can begin. The lowest standard must approach the method detection limit.

UV/Vis Spectrophotometer
The direct concentration method with three to five standards bracketing the expected analyte concentration will be used, depending on the analysis method requirement. The spectrophotometer will be zeroed before the first calibration standard and a procedural blank will be analyzed periodically to confirm the instrument is zeroed.

UV/persulfate TOC analyzer
The direct concentration method with five standards bracketing the expected analyte concentration will be used. The lowest standard must approach the method detection limit. The analyzer priming and cleaning procedure will be performed prior to instrument zeroing and analysis of the first calibration standard.
Instrument Inspection, Calibration and Service

Calibration Frequencies
Instruments will be recalibrated if the calibration verification standard recovery deviates from the known concentration in excess of the analysis method recovery requirement. Calibration verification standards will be analyzed prior to the analysis of samples, after every ten or twenty samples (depending upon the analysis method) and at the end of the analysis run. The concentration of the calibration verification standards will be no greater than one half of the highest calibration curve standard.

Absorbance Monitoring
Absorbance values from atomic absorption and UV/Vis spectrophotometer analyses will be monitored at each calibration. Trends in the absorbance values of the low calibration standard for each analyte will be monitored as a check on instrument performance.

Instrument Service and Preventative Maintenance
Minor repairs and routine instrument maintenance will be performed by laboratory personnel in accordance with the manufacturers' instructions. Manuals specifying service procedures are available for every instrument. Service technicians will perform repairs laboratory personnel are not capable of performing. A replacement parts inventory will be maintained for each instrument in order to minimize instrument downtime.

Internal Quality Control

Quality Control Samples and Parameters
The quality control requirements of each analysis method are specified in their respective SOPs. The terminology and associated definitions used to describe the method quality control requirements are listed below.

Initial Calibration Check
A solution containing a known concentration of method analytes used to evaluate the performance of an instrument relative to a defined set of method criteria. The initial calibration check should be analyzed immediately following instrument calibration.

Continuing Calibration Check
A calibration standard containing the method analytes, internal standard(s) and surrogate standard(s) which is analyzed periodically to verify the accuracy of the existing calibration for the method analytes.

Continuing Calibration Blank
An aliquot of reagent water prepared in exactly the same manner as the reagent water used for the preparation of the calibration standards. The continuing calibration blank is used as a zero standard and to auto-zero the instrument, or to determine if analyte carryover is occurring.

Quality Control Sample
A laboratory reagent blank or sample matrix fortified with a solution of method analytes of known concentrations. The quality control sample (QCS) must be prepared from an external laboratory source not used for the preparation of calibration standards. The purpose of the QCS is to verify laboratory performance relative to externally prepared standards and solutions.
Internal Quality Control

Quality Control Samples and Parameters

(continued)

Detection Limit for Purposes of Reporting
A calibration standard prepared at the concentration of the lowest calibration standard. The purpose of the detection limit for purposes of reporting (DLR) is to verify the accuracy of the calibration curve at the minimum reporting limit. The DLR must contain all method analytes, internal standard(s) and surrogate standard(s).

Field Reagent Blank
An aliquot of reagent water or other blank matrix that is treated exactly as a sample including shipment to the sampling site, exposure to sampling site conditions, storage, preservation and all analytical procedures. The purpose of the field reagent blank is to determine if method analytes or other interferences are present in the field environment.

Laboratory Reagent Blank
An aliquot of reagent water or other blank matrix that is treated exactly as a sample including exposure to all glassware, equipment, solvents, reagents, internal standards and surrogates that are used in the preparation and analysis of samples. The purpose of the laboratory reagent blank is to determine if method analytes or other interferences are present in the laboratory environment, reagents or apparatus.

Laboratory Fortified Blank
An aliquot of reagent water or other blank matrix to which known concentrations of the method analytes are added in the laboratory. The laboratory fortified blank must be analyzed exactly like a sample and its purpose is to determine if the methodology is in control and whether the laboratory is capable of making accurate and precise measurements.

Matrix Spike
An aliquot of an environmental sample to which known concentrations of the method analytes are added in the laboratory. The matrix spike (MS) must be analyzed in exactly the same manner as the samples. The purpose of the MS is to determine if the sample matrix contributes bias to the analytical results.

Matrix Spike Duplicate
Two aliquots of the same environmental sample to which known concentrations of the method analytes are added in the laboratory. The matrix spike duplicate (MSD) must be analyzed in exactly the same manner as the samples. The purpose of the MSD is to determine if the sample matrix contributes bias to the analytical results and to assess method precision and accuracy.

Duplicate Sample
Two aliquots of the same sample collected in the laboratory or field and analyzed separately using an identical analysis method. The purpose of the duplicate sample is to assess the precision of the laboratory analysis procedure.

Surrogate Standard
A pure analyte added to a sample prior to extraction or other processing for the purpose of monitoring method performance with each sample. A known concentration of the surrogate standard (SS) must be added to each sample and the SS must not be a method analyte.
Internal Quality Control

Quality Control Samples and Parameters
(continued)

Internal Standard
A pure analyte added to a sample, extract or standard solution for the purpose of measuring the relative responses of the other analytes and surrogates that are components of the same sample or solution. A known concentration of the internal standard (IS) must be added to each solution and the IS must not be a method analyte.

Control Charts
Control charts for every analyte will be maintained for continuing calibration check, duplicate sample, detection limit for purposes of reporting, laboratory fortified matrix and quality control samples. The control charts will specify mean recovery, upper control limits, and lower control limits. Upper and lower control limits for external reference samples may be the same criteria recommended by the supplier of the reference sample.

Anion-Cation Balance
An anion-cation balance will be calculated quarterly on the major ionic species for source and treated water. The typical criteria for acceptance are listed below.

<table>
<thead>
<tr>
<th>Anion Sum, meq/L</th>
<th>Acceptable Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 3.0</td>
<td>+/- 0.2</td>
</tr>
<tr>
<td>3.0 – 10.0</td>
<td>+/- 2%</td>
</tr>
<tr>
<td>10.0 - 800</td>
<td>5%</td>
</tr>
</tbody>
</table>

Conductivity
A logbook will be maintained for weekly checks of specific conductivity. The conductivity meter will be calibrated prior to measuring the conductivity of samples. Three KCl standard solutions will be prepared. The conductivity meter will be calibrated on the middle conductivity standard and correction factors will be calculated for the high and low standards. The middle conductivity standard will approach the expected conductivity of the samples.

Ion Specific Electrodes
The slope of the ion specific electrode will be recorded on every analysis batch summary sheet. The acceptance criteria for the electrode slope will be 57 mV +/- 3 mV.

Microbiology

Control Cultures
An ATCC registered control culture will be maintained for the following cultures:

- *Escherichia coli* (positive for TC, FC, *E. coli*)
- *Klebsiella pneumonia* (negative for FC)
- *Enterobacter aerogenes* (negative for FC)
- *Pseudomonas aeruginosa* (negative for TC)
- *Staphylococcus aureus* (negative for TC)

The control cultures will be transferred monthly to new plate count agar slant tubes. The control culture species shall be verified quarterly using API 20E identification tests.
Internal Quality Control

Microbiology
(continued)

Incubators
All incubator temperatures will be recorded twice each day. The temperatures shall not vary by more than +/- 0.5 °C from the method specified temperatures.

Media Preparation
All media will be prepared in strict adherence to the manufacturers’ instructions. The pH of the media will be taken after sterilization and recorded in the media logbook along with the preparation details. Expiration dates and dates opened will be marked on all media containers and recorded in the media logbook.

The sterility of every batch of media shall be verified by incubating an aliquot of the media for the required period and examining it for growth. Every batch of media will also be inoculated with control cultures to ensure the media produces the appropriate response. The positive and negative controls for each media type are specified in the table below.

<table>
<thead>
<tr>
<th>Media</th>
<th>Positive Control</th>
<th>Negative Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>brilliant green bile broth</td>
<td>Escherichia coli</td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>Colilert</td>
<td>Escherichia coli</td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>EC medium with MUG</td>
<td>Escherichia coli</td>
<td>Enterobacter aerogenes</td>
</tr>
<tr>
<td>m endo agar LES</td>
<td>Escherichia coli</td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>m FC agar</td>
<td>Escherichia coli</td>
<td>Klebsiella pneumonia</td>
</tr>
<tr>
<td>lauryl tryptose broth</td>
<td>Escherichia coli</td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>nutrient agar with MUG</td>
<td>Escherichia coli</td>
<td>Klebsiella pneumonia</td>
</tr>
<tr>
<td>plate count agar</td>
<td>Escherichia coli</td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>tryptic soy broth</td>
<td>Escherichia coli</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Methods

Enzyme Substrate Test
The enzyme substrate test will be the principal method used in the analysis of all treated and source water samples. Enzyme substrate analyses will be performed using Colilert media and vessels purchased from IDEXX. Each lot of Colilert will be inoculated with Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa to verify the media produces the appropriate response.

Heterotrophic Plate Counts
The bacterial density should be no greater than 300 bacteria per plate. A media blank plate and an air control plate will be analyzed in each batch of samples. The air control plate will remain uncovered and exposed for 15 minutes. The number of colony forming units must not exceed 15. A dilution water plate will be analyzed if samples are diluted. All plate count samples will be analyzed in duplicate.
Internal Quality Control

Microbiology
(continued)

Membrane Filtration
The membrane filtration method will be used to analyze treated and source water in the event the enzyme substrate method cannot be performed. The membrane bacterial density should be no greater than 80 coliform bacteria or 200 colonies of all types. Ten mL of dilution water will be added to the filter apparatus prior to filtering samples of 10 mL or less. The filter apparatus will be disinfected in the UV box after the filtration of each sample. A dilution water blank will be analyzed every 10 samples. All membrane filtration samples will be analyzed in duplicate.

Multiple Tube Fermentation
The multiple tube fermentation method will be used to analyze source water in the event the enzyme substrate method cannot be performed. Source water samples will be analyzed using 3 sets of 5 tubes containing 10mL, 1 mL, and 0.1 mL of media respectively. Positive and negative control cultures will be incubated with every batch of samples analyzed in EC with MUG media.

Sterilization
The sterilization times and maximum temperature shall be recorded for every autoclave run. A maximum temperature thermometer will be used to measure the temperature.

Vessels containing microbiological analysis media will be autoclaved for 15 minutes at 121ºC and 15 psi. The sterilization process will be confirmed whenever media is prepared (or monthly if multiple media batches are prepared during the month) by autoclaving a vial containing *Bacillus stearothermophilus* with the media and incubating it at 55 +/- 0.5ºC for 48 hours. Sterilization is confirmed if the vial does not change color or exhibit growth.

All sample bottles for microbiological analyses will be autoclaved for 15 minutes at 121ºC and 15 psi. The bottles will contain sodium thiosulfate prior to sterilization.

Waste will be autoclaved for a minimum of 30 minutes at 121ºC and 15 psi.

Sterility Verification
The sterility of every lot of each item, media batch or dilution water must be verified. The sterility verification procedures are listed in the table below. The absence of growth in the tryptic soy broth following incubation indicates that the item or dilution water is sterile. The sterilization of microbiological media is confirmed if the *Bacillus stearothermophilus* vial does not change color or exhibit growth following incubation.

<table>
<thead>
<tr>
<th>Item</th>
<th>Procedure</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>bacteria sample bottle</td>
<td>add 50 mL TSB x 1 to bottle</td>
<td>≥ 24 hours at 35 +/- 0.5ºC</td>
</tr>
<tr>
<td>dilution water</td>
<td>remove 50 mL of 100 mL dH₂O in bottle add 50 mL TSB x 2 to remaining 50 mL dH₂O in bottle</td>
<td>≥ 24 hours at 35 +/- 0.5ºC</td>
</tr>
<tr>
<td>membrane filter & pads</td>
<td>place item in sterile bottle add 100 mL TSB x 1 to sterile bottle containing filter</td>
<td>≥ 24 hours at 35 +/- 0.5ºC</td>
</tr>
<tr>
<td>microbiological media</td>
<td>autoclave Bacillus stearothermophilus vial with media</td>
<td>≥ 48 hours at 55 +/- 0.5ºC</td>
</tr>
<tr>
<td>Petri dish</td>
<td>add 5 mL TSB x 1 to Petri dish</td>
<td>≥ 24 hours at 35 +/- 0.5ºC</td>
</tr>
<tr>
<td>pipette and pipette tips</td>
<td>induct TSB x 1 to capacity of pipette or tip discharge TSB in pipette or tip into sterile Petri dish</td>
<td>≥ 24 hours at 35 +/- 0.5ºC</td>
</tr>
<tr>
<td>Quantitray</td>
<td>add 100 mL TSB x 1 to Quantitray</td>
<td>≥ 24 hours at 35 +/- 0.5ºC</td>
</tr>
</tbody>
</table>
Internal Quality Control

Microbiology
(continued)

Water Suitability and Inhibitory Residue Tests
The Water Suitability test and Inhibitory Residue test will be performed once each year as specified by Standard Methods, 20th edition.

pH Electrodes
A logbook will be maintained for pH electrode calibrations. The acceptance criteria for the electrode slope will be 100 +/- 10% (or as recommended by the manufacturer) for a two-point calibration consisting of pH 7.0 and pH 10.0 buffer solutions.

Pipettes – Adjustable
A logbook will be maintained for the monthly adjustable pipette calibration check. Each adjustable pipette will be tested at its lowest, middle and top operating range. Appropriate aliquots of dH2O will be used to determine if the pipettes are in calibration. Pipettes determined to be out of calibration will be recalibrated following manufacturer’s instructions.

Thermometers
A logbook will be maintained for the annual thermometer calibration check. Each thermometer will be checked against a certified NIST calibrated thermometer. A correction factor will be calculated for each thermometer if necessary. The correction factor will be recorded in the logbook and also affixed to the thermometer.

Turbidimeters
A logbook will be maintained for the weekly turbidimeters calibration check using 2 Gelex secondary standards. The acceptance criteria will be +/- 5% of the value of the secondary standards as measured immediately after the monthly calibration of the turbidimeters. The turbidimeters will be calibrated more frequently if the calibration check falls outside the acceptance criteria.

Apparatus and Reagent Quality Control Monitoring Schedule

Each Use
pH meter calibration

Weekly
conductivity meter accuracy check
eye wash station flush
reagent preparation
turbidimeter accuracy check
Internal Quality Control

Apparatus and Reagent Quality Control Monitoring Schedule
(continued)

Monthly
- autoclave sterility check
- balance accuracy check
- chloride electrode calibration (operations laboratory)
- control culture transfer
- pipette accuracy check
- quantitray sealer
- water quality check (dH2O & RO)
- titrant accuracy check
- turbidimeter calibration

Quarterly
- autoclave timer check

Biannually
- control culture rehydration
- control culture API 20E identification

Annually
- thermometer accuracy check

Logbooks
The following logbooks will be maintained to record instrument parameters, standard preparation, reagent preparation and reagent quality control.

1. Instrument Temperature Log:
 - incubator (total coliform)
 - incubator (fecal coliform)
 - refrigerator
 - autoclave
 - sterilization oven
 - fecal coliform waterbath

2. Instrument and Reagent Quality Control Log:
 - alkalinity
 - chloride
 - hardness
 - DI/RO system
 - gas inventory
 - hood velocity
 - autoclave timer
 - balances
 - thermometers
 - spectrophotometer (standard absorbance test)
Internal Quality Control

Logbooks
(continued)

3. Instrument Calibration Log:
 conductivity meter
 pH electrode
 turbidimeter calibration check
 turbidimeter calibration

4. Instrument Maintenance Logs

5. Microbiological Quality Control Log:
 Colilert reagent
 sterility (dilution water and vessels)
 autofluorescence
 quantitray sealer
 media preparation
 control cultures

6. Reagent Preparation Log

7. Metal Sample Digestion Log

8. Haloacetic Acid Sample Digestion Log

11. Ion Chromatography Standard Preparation Log

12. Organic Standard Preparation Log

Data Reduction and Validation

Significant Figures

All digits in a reported result are expected to be known definitely, except for the last digit, which may be in doubt. If more than a single doubtful digit is carried, the extra digit(s) is not significant.

Reported figures will be determined by the accuracy of the work.Digits that are not significant or known definitely will be dropped. If the digit 6, 7, 8, or 9 is dropped, the preceding digit will increase by one unit. If the digit 0, 1, 2, 3, or 4 is dropped, the preceding digit is not altered. If the digit 5 is dropped, the preceding digit is rounded off to the nearest even number. The digit 0 may record a measured value or it may serve as a spacer to locate a decimal point.
Data Reduction and Validation

Units

The International System of Units (SI) will be used to report most results. However, terms such as ppm and acre-feet will occasionally be used. Concentration units will be expressed as indicated in the table below.

<table>
<thead>
<tr>
<th>Referent</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>grams per liter</td>
<td>% or g/L</td>
</tr>
<tr>
<td>milligram per liter</td>
<td>mg/L</td>
</tr>
<tr>
<td>microgram per liter</td>
<td>µg/L</td>
</tr>
<tr>
<td>nanogram per liter</td>
<td>ng/L</td>
</tr>
<tr>
<td>Nephelometer turbidity units</td>
<td>NTU</td>
</tr>
<tr>
<td>colony forming units</td>
<td>cfu</td>
</tr>
<tr>
<td>part per million</td>
<td>ppm</td>
</tr>
<tr>
<td>part per billion</td>
<td>ppb</td>
</tr>
<tr>
<td>part per billion</td>
<td>ppt</td>
</tr>
</tbody>
</table>

Data Reduction

Data generated by the mass spectrometer, gas chromatograph, total organic carbon analyzer, high-pressure liquid chromatograph and atomic absorption spectrometer will be acquired and reduced by the instrument’s software. The software will be capable of accounting for diluted samples. Data generated by the UV/Vis spectrometer and pH/ion electrode will be recorded by hand and processed using software programs such as Curve and CCPro. The data systems will be able to generate the following data:

- Response/Calibration Factors
- Correlation Coefficient
- Variance
- Linear and quadratic best fit
- Maximum, minimum, and average
- Control charts

Raw data includes: handwritten and printed measured values, dilution and concentration factors, sample treatment and calculations.

Finished data includes: chromatograms, calibration curves, and computerized or handwritten analysis summary reports. All pertinent raw data will be attached to the corresponding finished report.

Data Validation

All analytical results will be reviewed prior to reporting. The review process will include but not be limited to: condition of sample, adherence to established standard operating procedures, verification of calculations and comparison of the new quality control data against established control charts.

Reporting

Final reports will be submitted only when all relevant data has been reduced, reviewed and validated. All reports submitted for compliance with CDPH regulations will be completed and submitted by the tenth day following the end of the monitoring period. Completion of compliance monitoring reports will take priority over all other reports.
Report and Record Archival

Records of all verbal and written water quality and system water outage complaints received will be retained for a period of five years. The records will also include any corrective action taken.

Records of all bacteriological analyses will be retained for a minimum of the most recent five years.

Records for all chemical analyses will be retained for a minimum of the most recent ten years.

All records will contain the following information:
- Sample date, place, and time
- Sample collector
- Sample identification (include sample type for bacteria samples)
- Date of report
- Name of the laboratory
- Name of the analyst or laboratory director
- Analytical technique or method
- Analysis results

Records and resultant corrective actions will be retained for a minimum of three years following the final action taken to correct a particular violation.

Records of any type relating to sanitary surveys of the system conducted by the water supplier, a private consultant, or any local, state or federal agency will be retained for a minimum of ten years following completion of the sanitary survey involved.

Variances or exemptions granted to the laboratory will be retained for a minimum of five years following the expiration of the variance or exemption.

Performance and System Audits

Laboratory Check Samples
Laboratory check samples purchased from vendors such as ERA and NSI will be analyzed quarterly. The analyte recovery will be within the acceptance range specified by the manufacturer. The check samples shall consist of regulated and unregulated analytes representative of the following classes of constituents:
1. inorganic metallics
2. inorganic non-metallics
3. purgeable organics
4. non-purgeable organics

Laboratory Intercomparison Samples
The laboratory will analyze performance evaluation samples annually as required by the Environmental Laboratory Accreditation Program. The samples will consist of metals, non-metals, organics and bacteria. The samples will encompass every method the laboratory is certified to perform.

Compliance Audits
The collection, storage and analysis of specific analytes and methods will be periodically observed to verify adherence to the appropriate SOP.
Performance and System Audits

Laboratory Quality Systems Audits
Internal quality systems audits will be conducted annually to assess the quality assurance process. The internal audit will examine the entire spectrum of procedures and policies associated with sample processing, sample analysis, data reduction and reporting. Environmental Laboratory Accreditation Program inspectors will conduct audits to assess the quality assurance process every other year.

Corrective Actions
Corrective actions will be implemented as soon as possible after the discovery of a deficiency. SOPs and policies will be updated and discussed with laboratory and treatment plant staff as necessary. Corrective action responses will be submitted to the Environmental Laboratory Accreditation Program as required.

Quality Assurance Reports
Quality assurance reports will include but not be limited to quality control charts, standard operating procedures and corrective action responses. Quality control charts will be updated and reviewed periodically. All quality control charts will be available for inspection by authorized personnel. Written standard operating procedures (SOPs) will be maintained for every method performed by the laboratory. The SOPs will be periodically reviewed and revised if deficiencies are discovered. Corrective action responses will be compiled addressing deficiencies discovered by the Environmental Laboratory Accreditation Program (ELAP) inspectors. The corrective action responses will be forwarded to ELAP and Agency management for review.

Traceability
All measurements will be made utilizing calibration standards and calibration check standards prepared in accordance with National Institute of Standards and Technology guidelines. The certificate of analysis for each calibration standard and calibration check standard will be kept on file for the duration of the measurement archival period. Standard preparation logbooks will be maintained listing the log number, concentration, expiration date and required dilutions for each analysis batch. The standard preparation logbooks will also be kept on file for the duration of the measurement archival period. All reagents used will be of American Chemical Society grade or better.

Procurement
All purchases of instrumentation and operating supplies will be made in accordance with the Kern County Water Agency’s Purchasing Policies Interpretation and Procedures Manual.
R. L. BASSETT, Ph.D.

Tetra Tech
3801 Automation Way, Suite 100
Fort Collins, CO 80525
970-206-4254

Academic Background

<table>
<thead>
<tr>
<th>Institution</th>
<th>Degree</th>
<th>Year</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYLOR UNIVERSITY</td>
<td>B.S.</td>
<td>1971</td>
<td>Geology, Chemistry (minor)</td>
</tr>
<tr>
<td>TEXAS TECH UNIVERSITY</td>
<td>M.S.</td>
<td>1973</td>
<td>Geochemistry</td>
</tr>
<tr>
<td>STANFORD UNIVERSITY</td>
<td>Ph.D.</td>
<td>1977</td>
<td>Environmental Geochemistry</td>
</tr>
<tr>
<td>U.C. BERKELEY</td>
<td></td>
<td>1974</td>
<td>Doctoral Exchange Geochemistry</td>
</tr>
</tbody>
</table>

Course work

Professional Work Experience

- **PRINCIPAL GEOCHEMIST**, Tetra Tech, Fort Collins, CO. March 2011 to present.

- **PROFESSOR**, Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona (1993 - 2000); **PROFESSOR** Geosciences Department, (Joint Appointment, until July, 2000), **Faculty Director** of the Isotope Laboratory in the Department of Hydrology and Water Resources, University of Arizona

- **EXPLORATION MANAGER**, Stauffer Oil and Gas Exploration, Subsidiary of Stauffer Chemical Co., Denver, Colorado (March 1982 - December 1985)

- **RESEARCH SCIENTIST**, The University of Texas at Austin, Bureau of Economic Geology, (September 1979 - March 1982)

Areas of Expertise

Brine Geochemistry Chemical Modeling
Contaminant Chemistry Groundwater and Vadose Zone Geochemistry
Isotope Geochemistry Project Management
Radioactive Waste Disposal Issues 3D Geologic Computer Visualization
Oil, Gas and Mining Contamination Flow and Transport Modeling

Professional Societies (Active and Past Member)

American Association of Petroleum Geologists
American Chemical Society
 - Colloid and Surface Chemistry Section
 - Geochemistry Section
American Geophysical Union
Association of Groundwater Scientists and Engineers
Baylor Geological Society
Clay Mineral Society
Geochemical Society
Geological Society of America
International Association of Geochemistry and Cosmochemistry
National Ground Water Association
New York Academy of Science
Rocky Mountain Association of Geologists
Society for Environmental Geochemistry and Health
Texas Academy of Science

Awards, Honors, and Honorary Societies

Sigma Xi
Omicron Delta Kappa
Sigma Gamma Epsilon
Texaco Scholarship (Geology), Baylor University [2 years]
USGS Graduate Fellowship (Geochemistry), Stanford University [2 years]
Henri Darcy Distinguished Lecturer: (Twenty University Tour) Selected by the National Ground Water Association [1989-90]
Nomination to The University of Arizona Honors Program Five Star Faculty Award for excellence in teaching [1988, 1989]
Cited by the College of Engineering and Mines, University of Arizona, as a nominee for the Burlington Award for teaching [1994]
National Academy of Sciences Committee on Low Level Radioactive Waste [1993-96]
NSF Joint U.S./Japan Workshop: "Collaborative Research Topics on Emerging
Hydrologic Hazard and Water Resources Engineering Issues.”
Professor of the Year (1996) Selected by the Tau Beta Pi Honorary Engineering Society

Editorial and Society Boards and Advisory Committees

Board of Directors of the National Ground Water Association, Association of Ground Water Scientists and Engineers, the largest association of ground water professionals with more than 24,000 members
Waterloo Centre for Groundwater Research, University of Waterloo, Ontario, Advisory Committee [1995-1996]
Associate Editor for the journal *Water Resources Research* [1989 - 1994]
Associate Editor for the journal *Ground Water* [1996 - 2003]
Associate Editor for the journal *Applied Geochemistry* [1998 - 2003]

Intramural Service

Lectured in the University of Arizona Chemistry Department, Geoscience Department, School of Natural and Renewal Resources.
Substitute lecturer for other faculty within the Department of Hydrology and Water Resources
Departmental Committees: [Space, Graduate, Admissions, Computer, Instrumentation, Field Camp]
Taught Summer Field Camp [1988-1992]
Faculty Search Committees:
- *Chairman and Head*, Department of Hydrology,
- *Hydrogeologist* Faculty Position, Dept. of Hydrology and Water Resources,
- *Vadose Zone Hydrologist* Faculty Position, Dept. of Hydrology and Water Resources,
- *Geoenvironmental* Faculty Postion, Civil Engineering Department,
- *Vice President for Research*, University of Arizona.
Began a Water Chemistry Colloquium series, in which graduate students have an opportunity to present the results of their research.
Member of Graduate Council, and Executive Committee of the Council for the University of Arizona [1992-97]
Extramural Service

Lecturer: Sunnyside High School, Tucson, AZ. Expanding Horizons Series [1988].
Co-organizer: National Conference for the American Chemical Society on Chemical Modeling[1988], “Chemical Modeling in Aqueous Systems II."
Reviewed numerous technical journal articles for leading journals in the field of hydrology and geochemistry (Water Resources Research, Applied Geochemistry, Geochimica et Cosmochimica Acta, Limnology and Oceanography).
Reviewed numerous proposals for funding agencies (National Science Foundation, United States Geological Survey, American Chemical Society).
Served as Session Chairman for National Conferences (American Geophysical Union, American Chemical Society, Waste Management Conference).
Reviewed numerous books on isotope geochemistry, aqueous geochemistry and environmental hydrology.
Numerous Short Courses for the USGS, National Training Center in Denver, CO.
Short Courses sponsored by the EPA Dallas and Austin, Texas.
Guest lecturer in Geochemistry classes (Univ. Colorado; Colorado School of Mines andGeology; Univ. Texas at Austin).
Review Team Member for External Review of the Department of Geology and Atmospheric Sciences at Iowa State University [1992].

Scientific Publications: Refereed Journal Articles, Conference Proceedings, Book Chapters, Monographs, etc.

Other Publications: Research Reports and Contract Reports

Bassett, R.L., 1987, An interim report on the results of the geochemical investigation of brine injection at Mont Belvieu, Texas: Report prepared for the city of Mont Belvieu, Texas,

Bassett, R.L., 1987, A report to the state of Texas on brine leaks in Canadian potash mines and the analogy to the Palo Duro Basin, Texas, which potentially contains sites for the storage of nuclear waste: a report prepared for the state of Texas.

Media:

Professional Society Meetings and Conferences:

More than 50 presentations, most with published abstracts, at national professional meetings, federal labs, regulatory agencies and professional conferences [American Geophysical Union, Arizona Hydrological Society, Geological Society of America, American Association of Petroleum Geologists, International Association of Geochemistry and Cosmochemistry, Society of Environmental Geochemistry and Health, Texas Academy of Science, Center for Nuclear Waste Regulatory Analysis].

Distinguished Lectureship:

Henri Darcy Distinguished Lecturer [1989, 1990] - 20 lectures at universities, conferences, and research labs, sponsored by the National Ground Water Association/Association of Ground Water Scientists and Engineers.

Keynote Speaker:

Annual Meeting of Arizona Post Secondary Chemistry Teachers [1990]
- Phoenix Chapter of the Arizona Hydrological Society, [1990,1992]
- Rocky Mountain Association of Ground Water Scientists, Salt Lake City, Utah, [1989]
- National Meeting, National Ground Water Association/AWGSE, Houston, Texas, [1989]

Other Significant Invited Presentations:

- INVITED SPEAKER: AGU Spring Annual Meeting, 1997, Baltimore, MD
- INVITED SPEAKER: GSA Annual Meeting Fall 1996, Denver, CO
- Presentation to the Yucca Mountain Licensing Group, U.S. Nuclear Regulatory Commission, Rockville, MD, Nov. 20, 1996.
- Presentation to the Advisory Committee on Nuclear Waste (ACNW), Las Vegas, Nevada, September, 26, 1996.
- Round Table Discussion, Panel on Structural Geology & Geoengineering and Hydrogeology & Geochemistry, Nuclear Waste Technical Review Board (NWTRB), Washington, DC, Nov. 18, 1994.
Summary of Qualifications

- Twenty-six years experience as geologist in groundwater, petroleum, and mining.
- Proven written and communication skills.
- Seven years experience of supervising staff.
- Leadership roles and participation in groundwater banking committees.
- Provide hydrogeologic and database services for various local, state and federal agencies.

EXPERIENCE

Kern County Water Agency (KCWA) - Geologist IV 5/88 Present

- Supervise staff in groundwater level/quality monitoring programs, GIS mapping, database management, report generation.
- Budget development for KCWA, Improvement District 3 (Kelso Creek Flood Control Dist.), Kern Fan Monitoring Committee.
- Secretary for Kern Fan Monitoring Committee.
- Hydrogeologic and database services to Indian Wells Valley Cooperative Groundwater Management Committee, Kern County Environmental Health Services Department, Kern Water Bank Authority, CA Dept. of Water Resources, CA Dept. of Health Services, CA Regional Water Quality Control Board, U.S. EPA, U.S. Army Corps of Engineers.
- Responsible for groundwater maps, hydrologic balance, text and figures for KCWA annual reports, Kern Fan Monitoring Committee Annual Report, Improvement District 4 (urban Bakersfield water district) annual report.

Union Oil Company of California - Geologic Technician 2/84 TO 5/88

- Well site geologist.
- Interface between oil field development geology staff, reservoir engineering staff and mainframe/PC computer system.
- Geophysical database management, computer generated mapping, and reservoir modeling.

Sierra Exploration Drilling Company - Geologist 12/80 TO 7/82

- Well site geologist.
- Water well design and construction.
- Mud logging, electric log interpretation, mud engineering, air/mud rotary drilling rig operation.

EDUCATION

West Virginia University, Morgantown, West Virginia 5/78
Bachelor of Science: Geology

Santa Barbara City College, Santa Barbara, California 5/82
Certificate of Geoscience Technology

SPECIAL TRAINING

California State University: Advanced Hydrogeology
GDMS, Lancaster, CA: Auto Desk Land Development (graphics and GIS software)
GDMS, Lancaster, CA: ArcView (GIS software)

CERTIFICATES/MEMBERSHIPS

Registered Geologist, California-No. 4739 3/90
Certified Hydrogeologist, California-No. 446 6/96
Water Treatment Plant Operator, Grade 2, No. 18649 12/93
Groundwater Resources Association of CA, San Joaquin Valley Chapter - Vice President 2002 to present
Michelle Casterline
4101 Brittany Ct. Apt 210
Bakersfield, CA 93312
(661) 368-2347
mcasterline93@gmail.com

Objective
Position as a Geologist

Education
California State University, Bakersfield
Bachelor of Arts in Geology; minor in Biology

Certifications
Professional Geologist CA #8898

Relevant Experience
6/07 to Present
Kern County Water Agency
Hydrogeologist
Responsible for the collection, analysis, and writing of reports using groundwater, hydrological, surface water, water quality data, geographic information systems (GIS) and engineering applications. Provide technical information to Agency personnel, engineers and the public. Responsible for project execution including preparation of plans and specifications related to groundwater projects. Preparation of technical reports, motions, and resolutions for the Board of Directors and various committees. Analyzes water management plans involving local and imported water sources of a variety of agricultural, municipal, and industrial uses, including operations, costs and budgets.

9/06 to 6/07
California State University, Bakersfield
Teaching Assistant
Conduct laboratory demonstrations; Instruct students on lab assignments; Work with lecture instructors and associate Teaching Assistants to organize lab assignments for the year; Grade lab assignments and assign final lab grades.

6/06 to 9/06
Kern County Water Agency
Water Resource Intern
Responsible for gathering, organizing, and analyzing water supply data; Responsible for writing the 2001-2005 Water Supply Report; Collected and entered stream data from field stations.

8/05 to 6/06
California State University, Bakersfield
Research Assistant
Gathered and scanned 1700 shallow oil and water well electric logs; Digitized and imported several hundred electric logs; Constructed geologic cross-sections using digitized electric logs; Taught undergraduate and graduate students how to scan and digitize electric logs, construct cross-sections, and enter data into Geographix™.

Computer Skills
Knowledge of Microsoft Office Suite/IMAC/Neuralog™ Geographix™ Environmental Visualization Software (EVS) PRO

References
Available Upon Request
EMPLOYMENT

♦ Chief Engineer/District Engineer 6/06-present
Indian Wells Valley Water District, Ridgecrest, CA

Responsibilities: Manager of the Engineering Department including engineering; chemical, bacteriological and biological reviews; construction management; regulatory compliance; and related technical and administrative assignments. When assigned by the General Manager, assist and support the General Manager, including acting as General Manager. Additional responsibilities include maintaining District engineering standards and reviewing plans for compliance with District standards, and preparing engineering plans and specification for District projects.

♦ Assistant Engineer 10/05-6/06
Indian Wells Valley Water District, Ridgecrest, CA

Responsibilities: Water distribution mapping and hydraulic analysis using AutoCAD and H2OMAP, overseeing biological permitting and liaison with California Department of Fish and Game, gathering of data and development of comprehensive database for water quality results, and development of yearly Consumer Confidence Report. In addition, responsibilities include interacting with and evaluating the needs of customers through phone calls and office visits.

♦ Research Assistant 8/01-8/05
Department of Civil and Environmental Engineering, University of Alabama

Responsibilities: Dissertation-level research on metals association with particulate matter in stormwater runoff. Project Research Assistant on two EPA-funded projects: “Methods for Detection of Inappropriate Discharges from Storm Drainage Systems” and “Evaluation of NPDES MS4 Stormwater Monitoring Data”. Trained students in the use of laboratory equipment and supervised up to five Master’s Degree students. Taught class sessions in Water Resources Engineering.

♦ Environmental Health Specialist II 11/96-08/99
Benton-Franklin Health District, Kennewick, WA

Responsibilities: Initiated a new and innovative water quality education program for the local community in order to raise awareness of the potential public health problem caused by local groundwater contamination by nitrates. Duties involved development of educational material in both English and Spanish (brochures, fact sheets, school curricula, newspaper articles, and radio public service announcements). Educational materials were designed to explain health effects of nitrates, local on-site sewage rules and regulations, importance of well maintenance and testing of drinking water, and the benefits of recycling of household hazardous waste. Community outreach involved numerous school and community presentations, participation in local health fairs and other events and interviews with local television and radio stations. Additional responsibilities involved listening to and evaluating phone calls and office visits from the general public related to on-site sewage and land use regulations.
CERTIFICATIONS

♦ Licensed Professional Civil Engineer, State of California, Certificate No. 79344
♦ Grade D2 Water Distribution Operator, State of California Department of Public Health. Operator # 34708

EDUCATION

♦ University of Alabama, Tuscaloosa, AL
 Ph.D. in Civil Engineering, August 2005

♦ University of Alabama at Birmingham, Birmingham, AL
 M.S. in Civil Engineering, August 2001
 M.S. in Public Health, August 1996

♦ University of Puget Sound, Tacoma, WA
 Bachelor of Science in Biology, May 1993

RESEARCH

♦ Doctor of Philosophy, Dissertation: Pollutant Associations with Particulates in Stormwater. Sequential extraction experiments examining the characteristics of the filterable portion of stormwater heavy metals utilizing a Chelex-100 ion-exchange resin, ultraviolet light exposure, and Anodic Stripping Voltammetry to measure the chemical forms of the heavy metals.

♦ Master’s of Science in Civil Engineering, Non-Thesis Research Project: Sequential Extraction and Particle Size Associations of Stormwater Pollutants. Part of a larger project funded by the Water Environment Research Foundation titled: Innovative Metals Removal Technologies for Urban Stormwater. A joint project between the University of Alabama at Birmingham and the University of Alabama.

PUBLICATIONS AND PRESENTATIONS

♦ Author of 10 journal articles and published proceedings.
♦ Co-author of 14 published proceedings and 2 chapters in books.
♦ Presenter of 14 papers at local and national conferences.
EMPLOYMENT

WATER RESOURCES PLANNER II 2008-PRESENT
Kern County Water Agency
Bakersfield, CA

Develop and implement water quality sampling schedule and water level measurement schedule. Developed water quality monitoring plan merging plans from four different banking facilities (M&I and Agricultural) into one sampling program to be compliant with DWR and CA Department of Public Health. Represent Agency as Water Quality Representative at conferences and meetings. Developed QA protocol to ensure that water level measurement devices and water quality equipment are calibrated. Developed Water Quality SOPs for field staff use. Responsible for property management (including different leases, permits, etc.) of groundwater banking facilities. Compile reports on the cumulative operations of the alluvial fan groundwater banking region for the regional monitoring committee. Provide statistical and graphical water quality analyses as needed. Comment on projects and operations that may impact groundwater quality in the region. Enter water quality data into the database. Lead role on amendments to grants and progress reports on state grants. Prepare budget for the department, consisting of multiple funds and cost centers. Work with little supervision. Supervised summer intern.

LABORATORY WATER QUALITY ANALYST II 2005-2008
Kern County Water Agency – Improvement District No. 4
Bakersfield, CA

Perform chemical and biological water quality testing on source waters (including groundwater and surface waters) and treated drinking water. Provide reports for the Laboratory Supervisor and for the state Write-On database. Help ensure drinking water values are within established limits. Perform weekly, monthly, quarterly, and annual sampling and analysis as required. Perform weekly, monthly, and quarterly quality control procedures.

ANALYST I 2003-2005
BC Laboratories, Inc.
Bakersfield, CA

Performed EPA 8015M (Luft, Total Petroleum Hydrocarbons) method on extracts from water, soil and oil matrices. Performed this analysis utilizing both Hewlett-Packard and Perkin-Elmer Gas Chromatography instruments. Performed regular maintenance and
troubleshooting on instruments to remedy problems. Differentiated fuels based on chromatographic results. Developed an 8015b Direct-Inject method and SOP.

QUALITY CONTROL CHEMIST I 2000-2003
Chemron, Corporation
Paso Robles, CA

Performed a variety of different wet chemistry tests on products made for the personal hygiene and oilfield industries. Ensured that products met different specifications and made additions to them to ensure quality completion. Prepared and signed off on Certificates of Analyses. Worked with little to no supervision.

EDUCATION

California Polytechnic State University San Luis Obispo, CA
Concentration of Microbial Ecology. Extensive chemistry and biology classes. Transcripts available. GPA 3.11

GENERAL EDUCATION 1995-1997
Bakersfield College Bakersfield, CA
Dean’s List student five times. General education classes and prerequisites for transfer to Cal Poly.

CERTIFICATIONS

- AWWA, California-Nevada Section, Water Quality Laboratory Analyst Grade 2, Certification No. 020117, Expires 05/31/2013

SKILLS

- High level of responsibility, dependability, and personal pride in work
- Work well with little to no supervision
- Highly adaptable, gain understanding of new concepts quickly and accurately
GLENN W HARRIS

EMPLOYMENT

Natural Resources Specialist 1989 to present
United States Department of Interior, Bureau of Land Management
Ridgecrest Field Office, Ridgecrest, California

Serves as program lead for the Soil, Water, Air and Botany programs for the BLM field office. The program lead is responsible for monitoring the conditions of the 1.8 million acres of land in the field office and evaluating proposed projects for potential impacts to the resources. A portion of work involves reviewing large renewable energy projects and preparing and/or reviewing associated environmental documents. Many of these documents are joint EIS/EIR documents. In the area of ground water, work has involved reviewing proposed projects for impacts to ground water, development of stipulations, mitigations and monitoring plans. Additional work has included project inspector on well drilling contracts, ground water sampling, inventories of abandoned wells, development of security for abandoned wells, and served as chairman of the Technical Advisory Committee for the Indian Wells Valley Cooperative Ground Water Management Group. Also served as an instructor for a number of classes at the BLM National Training Center.

Lead Rangeland Management Specialist 1974 to 1989

Provide overall administration for grazing use in the area. Work included supervision of other employees in the administration of the program including authorizations and billings, compliance, conducting monitoring studies, development of management plans and designing and directing construction of numerous range projects.

EDUCATION

Bachelor of Science in Rangelands Management
Humboldt State College (CSU Humboldt)
School of Natural Resources
Minor in Geology
Extensive graduate work in Wildland Hydrology.

Riverside City College
Administration of Justice
EDUCATION

Associates in Science Degree
Cerro Coso Community College
GPA 3.15
August 2003 – December 2005

NATURAL RESOURCES EXPERIENCE

I have assisted Bob Robinson, the watershed coordinator in Kern River Valley in community outreach and area statistics for reports and projects that educate about water restoration. I have previous experience in the Boy Scouts and NRCS in gathering and organizing volunteers who are interested in assisting with various projects. I also have extensive experience from my work with the DMRC&D and NRCS in documenting and reporting on projects since extensive documentation is always required in government assisted or grant funded projects. I am currently working in the Indian Wells Valley and Searles Valley on watershed projects and coordinating with many local groups to secure grant funds and make a successful watershed plan.

WORK EXPERIENCE

Watershed Coordinator, Indian Wells & Searles Valleys
October 2011 – Present
CSU Stanislaus, Turlock, California

My primary responsibility is to coordinate with and provide technical support and other assistance to help the IWVCGMG and partners with watershed related objectives. This is a full time position based in the Ridgecrest CA area. Skills and duties include: interpersonal communication skills and an understanding of “social” context in order to work effectively with a wide diversity of stakeholders, administrative skills to manage any and all aspects of projects including grant writing, budget development and tracking, reporting, and coordinating subcontractors.

Soil Conservation Technician, NRCS
Natural Resources Conservation Service, Ridgecrest, California

I updated, and maintained site pages for desertmountainrcandd.org, using CSS, HTML, Ajax, and Dreamweaver. Created map overlays and supporting documentation for reports using ARC GIS 9.2. Additional duties included project multi-tasking, public interaction, and meeting organization. I have 4 years of experience in graphic design creating publications with Adobe Indesign, Illustrator and Microsoft Publisher. I have a fairly extensive portfolio upon request.

Conservation Aid III, NDOW
May 2006 – Aug 2006
Nevada Department of Wildlife, Las Vegas, Nevada

I worked as a Conservation Aide III, conducting native fish fieldwork mostly on the Muddy and Virgin rivers. I also helped out with game fish projects on Lake Mead. My fieldwork included the setting of hoop nets, river seining, trawling at night for shad, and dive counts. I have been trained in procedures of fish hatcheries and helped design and build the native fish room at the Lake Mead Fish Hatchery. I was also on the team involved with the maintenance planning and management of the Devils Hole pup-fish refugia below Hoover dam.

Skills

- Dreamweaver
- Photoshop
- Illustrator
- Indesign
- ArcGIS
- MS Office Suite

Operating Systems

- Windows XP/Vista/7
Field Biologist Technician, SSRS
Southern Sierra Research Station, Weldon, California
May 2005 – August 2005

During my internship, I was required to recognize and identify a variety of target birds by sight and sound. I am proficient with Willow Flycatcher survey protocol and nest searching procedures. I have gained hands on experience with fledgling banding and resighting of both Willow Flycatchers and Black Phoebes. I am familiar with GIS and have used Garmin GPS units to take points and record survey data and locations of re-sighted birds. I participated on the MAPS program, a continent-wide banding program monitoring avian productivity and survivorship. My experiences also involved the non-native removal project of plant species such as Purple Loosestrife, Salt Cedar, and Russian Olive.

Conservation Aid II, NDOW
Nevada Department of Wildlife, Reno, Nevada
May 2004 – August 2004

I was hired by the fisheries department as a Conservation Aide II. I conducted creel censuses, requiring fishermen to be individually interviewed in the field about their fishing success, the bait or technique used, the water conditions, and the weather. Other duties included electroshocking streams for spawning or eradication purposes and hatchery fin clipping. I assisted with the Lahontan cutthroat trout project, which is reintroducing the Lahontan cutthroat trout into the Truckee River. The project involved surgically inserted radio transmitters, tracking the fish in the field with radio telemetry equipment and recovering the transmitters.

ACTIVITIES & AWARDS

Maturango Museum 1999-Present. Volunteer docent for the Maturango Museum leading museum tours and presenting natural history programs to the public and elementary schools K-5th. During the Museum’s annual wildflower show, I collect plant specimens from the surrounding area, assisting with their identification and display in the museum.

BLM 1999-Present. Volunteer for the BLM, assisting with their community supported (S.E.E.P.), Sand Canyon Environmental Education Program for 5th graders in the valley.

Boy Scouts of America 1997-2005. In 2004 I achieved the rank of Eagle Scout, the highest rank in Scouting.

Ridgecrest Public Library 1997-2004. When working as a volunteer Departmental Aide at the library, I became proficient with assisting patrons, locating reference materials, and shelving materials using the Dewey decimal system or the Library of Congress system. Organized and ran many of the summer reading programs for the library with assistance of my recruited friends and family including the READ group and Harry Potter Days.

References

Donna Thomas (EKCRCD) (760) 977-7967
Hudson Minshew (Natural Resources Conservation Service) (661) 303-4120
Carolyn Lofreso (Natural Resources Conservation Service) (775) 688-1882
Phil Leitner (Endangered species recovery program) (925) 253-8400
Terri Middlemiss (Audubon) (760) 377-5192
Dan Johnson (CCCC Network Admin) (760) 793-2776