Session Title: Marine and Estuarine Fisheries: Research, Conservation, and Management in a Changing
Climate.

Session Moderator: Cynthia LeDoux-Bloom, Staff Scientist, Dept. of Water Resources

Abstract:

California has the largest human population in the United States with 90% living within 15 miles of coast.
Subsequent large-scale development has decreased and altered the aquatic habitat available to marine and
estuarine dependent fish species to the extent that some fisheries are closed (e.g. Chinook salmon) while
others are in decline (e.g. Striped bass). Californian’s burgeoning human population depends on water
exported from the Sacramento-San Joaquin watersheds usually pumped from the San Francisco Estuary,
the largest estuary on the west coast. Water exports significantly change the flow regimes and tidal
mechanisms within the San Francisco Estuary and near-shore coastal waters. Fluxes in both the marine
and estuarine habitat quality has contributed to the listing of several estuarine dependent fish species (e.g.
delta smelt, coho salmon, and green sturgeon) by state and federal agencies.

Anticipated future climate change has driven research, modeling, and forecasting efforts to detect and
predict changes in fish populations, distributions, and assemblages resulting in new management strategies
and policies. Presentations in this session glimpse into the future by linking current marine and estuarine
fisheries research, conservation and management efforts with climate change.

Presentations:
1. Climatic and anthropogenic factors affecting the marine and estuarine environments.

Joseph Merz, Ph.D., Cramer Fish Sciences, 600 NW Fariss Rd., Gresham, OR 97030.
jmerz@fishsciences.net

2. Variation in response of Pacific salmon to environmental variability
Louis W. Botsford, Ph.D., Department of Wildlife, Fish and Conservation Biology, University of
California, One Shields Avenue, Davis, CA 95616. lwbotsford@ucdavis.edu

3. Forecasting returns of coho and Chinook salmon in the northern California Current: a role for high-
frequency long term observations.
William Peterson, Ph.D., NOAA-Fisheries, Northwest Fisheries Science Center,
Hatfield Marine Science Center, Newport, OR 97365. bill.peterson@noaa.gov

4. Modeling the Effects of Future Freshwater Flow on the Abiotic Habitat of an Imperiled
Estuarine Fish.
Frederick Feyrer, Applied Science Branch, U.S. Bureau of Reclamation, 2800 Cottage Way,
Sacramento, CA 95825. ffeyrer@mp.usbr.gov

5. Ecological Response to Climate-Change Induced Water Temperature Changes in the Sacramento-
San Joaquin Delta
Wayne Wagner, Department of Civil and Environmental Engineering, 760 Davis Hall, University of
California, Berkeley, CA 94720-1710. waynestock19@hotmail.com




6. What Resource Managers and Researchers Need in Planning for Climate Change?
Russell J. Bellmer, Ph.D., Coordinator Coho Recovery Plan, Fisheries Branch, California
Department of Fish & Game, Sacramento, CA 95811. rbellmer@dfg.ca.gov
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salmonids, in the Northern California Current region. He also leads an active research program on the
biology and ecology of euphausiids.
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The Pacific Ring of Fire is perhaps one of the most volcanically active
places on Earth. Each red dots indicates an active volcano.
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Orographic effect - Rain Shadow

As air is forced upward over the mountains, it cools,
causing water vapor to condense and rain out

Warm wet air Hain shadow

e Dry air flows
dewn and warms,

Air flow - _ promaoting, evaporation
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The water resources of California depend heavily on snowpack to store part of the
wintertime precipitation into the drier summer months.
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Many streams have a predictable period when the hydrograph
transports coarse sediment. This is often a result of seasonal as well
as “type” of precipitation (e.g. snow or rain).
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Seasonal flood pulse drives productivity
of the Central Valley
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Left: Schematic diagram showing equatorward winds along the
California coast (purple arrow) push water offshore (red arrow),
leading to upwelling of colder water along the coast (blue arrow)
shown in the figure on the right above. The cold water not only
influences the atmosphere, but it also carries nutrients that
increase the productivity of the area.

From Bay Nature: A Moveable Feast: The Ups and Downs of
Coastal Upwelling. Drawing by Fiona Morris.

AVHRR-GAC SST from 16 Jul 2006 to 18 Jul 2006
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Right: Sea-surface temperature along the US west
coast on 16-18 July 2006 measured by the Advanced
High Resolution Radiometer AVHRR on the NOAA
polar-orbiting, meteorological satellites. The cold
(blue) areas are upwelled water caused by north
winds offshore of the coast. Click on the image for a
zoom with color scale.

From NOAA CoastWatch.



Composite satellite image since 1978 depicting
phytoplankton concentration along North &
South America. The image key is in units of
milligrams of phytoplankton pigment per cubic
meter of seawater. Note how high populations
of plankton correspond to areas where coastal
upwelling is strong, like the Peruvian coast and
the Pacific Northwest. (From: NASA)
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All organic material sinks to ‘rhe bo‘r’rom eventually and the upper water column
would be pretty much a non-productive area if it weren't for upwellings.

In fact, off the coast of California, the North Pacific currents, in combination with
upwelling caused by winds out of the north, bring cold nutrient waters to surface
near shore, producing one of the most abundant fisheries on Earth.
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Remember the currents off the Pacific Coast creating upwellings
that provide nutrients? There are seasonal processes like El

Nino that can influence this.

A comparison of phytoplankton concentration during upwelling periods off the coast of Peru: (A) 1983, a severe El Nifio
and (B) 1985, a non-El Nifio period. Note how much smaller the bloom (circled) is during El Nifio conditions, when
nutrient upwelling ceases. The color key needed to read the phytoplankton concentrations is the same as that in the

above satellite image. (From: NASA)




Observed Effects of Climate Variability on Salmon

¢l =

Parific Marlbiweat Index

[
=]
|

Abundances of many salmon
stocks closely track inter-
decadal climate variation
since 1940, Upper Columbia
bright spring Chinook are
abundant when the Pacific
Northwest Index (one meas-
ure of decadal climate varia-
tion) is negative. Both are 5-
year moving averages.
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Table 2. Seven environmental variables used to character-
ize the oceanic environment between Cape Mendocino and
Cape Blanco off shore to 125°W (Fig. 1) were collected from
various sources for the years 1977-2002.

Variable description

Variable identifier

Easterly pseudo-wind stress*

Northerly pseudo-wind stress*"

Non-directional wind speed;

scalar wind speed™
Upwelling*
Curl ™%
Sea surface temperature®
Sea level height**

EPseudo
NPseudo

Scalar

Upwelling
Curl
SST
SLH

Figure 11. Shown is the fit of average fork lengths (FL) of
returning three ocean-winter fish with environmental data from the
spring before the last winter at sea using partial least squares
regression displayed across the time series & as an inset scatter
plot showing the fit of the data to the first latent variable (xscr).
Gray time series show the observed average fork lengths (+1
standard error) of three oceanwinter fish across the return years for
which there were data, & black time series show the predicted
average FL from the partial least squares regression. The inset
scatter plot shows the observed average FL of three oceanwinter
fish fit with the first latent variable and, within the inset, the gray
line represents the fitted relationship of observed data to the first
latent variable. (Wells, Grimes, Waldvogel 2007).



Many aquatic organisms have life histories
adapted to seasonal events in the
environment (Phenology).

Phenology plays a critical role in the California
Current System (CCS), in which ecosystem
productivity and structure is driven largely by
the seasonal cycle of coastal upwelling.

The impact of an anomalous seasonal cycle
such as delayed onset of coastal upwelling
(Schwing et al., 2006), can result in:

anomalously warm sea surface temperatures
(Kosro et al., 2006; Pierce et al., 2006),

low surface chlorophyll levels (Thomas and
Brickley, 2006),

spatial redistribution of zooplankton species
(Mackas et al., 2006),

low rockfish recruitment and lack of forage
species (Brodeur et al., 2006),

total breeding failure of dominant B
planktivorous marine birds (Sydeman et al., KN =
2006), and enl G

changes in California sea lion foraging
strategies (Wiese et al.,2006).

Photos courtesy of Monterey Bay Aquarium Research Institute




Climate Change and
Anthropogenic Effects on
These Processes




Changes In Air Temperature From
1890 to 2008 Lodi CA
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In contrast, an insignificant temperature change in December
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Global Warming Threatens
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accepled February 2008].



e -

a

FIG. 1. Trends in fraction of winter (Nov—Mar) precipitation falling on snowy days (SFE/P), 1949—
2004 red indicates decreasing snowfall fractions; symbol radius is proportional to study period
changes, measured in standard deviations of the detrended time series as indicated; circles
indicate high trend significance (p < 0.05), and squares indicate lower trend significance (Knolwes
et al. 2006).

Trends toward reduced SNOW/RAIN ratios were most pronounced in March regionwide and in
January near the West Coast, corresponding to widespread warming in these months.
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Hydromodification refers to the effects of urbanization on stormwater runoff and stream flows. As
natural surfaces are paved, covered by structures, and compacted, less rainwater infiltrates into the
ground. Urbanization also increases the connectivity of paved surfaces and the storm drain system:
roof downspouts, curbs, streets, and drainage pipes all flow directly fo storm drains, which discharge
directly to streams. So, not only does more water flow to creeks, but the pavement and storm drains
speed the delivery of the runoff into the creeks.

(Qc is the flow rate at which bed and bank material begins to erode.)
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Pre-Development vs. Post-Development Hydrographs for Santa Clara Valley from GeoSyntec Consultants







Snyder et al. (2007) : Modeling scenarios

suggest future wind strength increase along S Warm alr over the land rises
California coast may have far reaching

effects:

land temperatures are increasing at a faster

rate than ocean temperatures, and this

thermal gradient is driving increased winds. Land heats up faster than water

increases in wind speeds of up to 2 meters
per second, which is a large change in
relation to current average wind speeds of
about 5 meters per second.

One effect of these increased winds may be
earlier and more intense upwelling of cold
water along the coast.

An enhanced sea breeze during the warm
months of the year has a cooling effect along
the coast. Such a cooling trend could have
many ramifications, particularly for coastal
species adapted to seasonal changes in
temperatures and fog.




While upwelling is generally a
good thing, bringing up
nutrient-rich deep water to
support thriving coastal
ecosystems, researchers
think too much upwelling may
be causing the massive
"dead zone" that has begun
to appear with alarming
regularity off the Oregon
coast.

Intense upwelling driven by
stronger, more persistent
winds stimulates excessive
growth of phytoplankton
(microscopic algae), which
ultimately sink to the bottom
and decompose, sucking
oxygen out of the bottom
waters.

@KALALD
LIKELY ® SEATTLE
DEAD ‘
ZONE
OLYMPIA

WASHINGTON

UNDOCUMENTED
AREA

®
PORTLAND

OREGON

Dungeness crabs washed ashore

at Cape Perpetua as the ocean off

Oregon experienced "dead zone" B Y

conditions in the summer of 2004. e "'
Deadly plume off of South Africa coast




Strong winds can also
create:

extremely hazardous
fire conditions, as was
seen last fall in

Southern California.

Greater fire
Incidences within
iInland waterways will
have far-reaching
effects on watershed
health.




| -
()
=
o
o
©
=
=
n
7))
]
C
| -
®©
e
@)
+—
()
i)
| -
©
>
©
S
7))
Q@
=
(-
-
s
o
o
o
o
S
)
=
©
()
S
Q)




160000 -
Unimpaired runoff

o 120000 - |
[
S Actual inflow
g 80000 - “
= I
< _.

40000 - \ 4

o OUPEIUASIA

ONDJFMAMJJ AS
Figure 1. The amounts and timing of freshwater inflow to the Bay have been
altered by upstream dams and water diversions. The blue line shows unimpaired
runoff from the ten largest rivers of the Sacramento-San Joaquin watershed. The

red line shows the actual pattern of freshwater inflow to the Bay from the
watershed (taken from Bay Institute 2003).
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Figure X Monthly median flow values, pre-Shasta and post-Shasta, at the USGS
gauge at Red Bluff. Median flows have been considerably reduced during winter

and spring, due to reservoir storage and regulation, and increased during
summer for irrigation and water supply deliveries (Williams et al. 2009).
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Figure 4. Unimpaired versus actual inflow for the period 1997 -2008; Sacramento-
San Joaquin Delta.
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Photo of sardine schools (dark patches) around a commercial purse seine
fishing vessel from the NOAA Twin Otter during LIDAR aerial surveys within
the Columbia plume. (photo courtesy of Northwest Fisheries Science Center)




Temperature ("C)
Salinity
— Sooty shearwater
— Common murre

Example of what the Columbia River plume

front looks like. At certain phases of the tide,

the boundary between the river and ocean

water is visible as a long foam line between

brownish water from the river and more

grayish or bluish water from the ocean. All ml ‘

juvenile salmon exiting the Columbia River ."Aulmm

must pass through this boundary to enter the . AV AN VA

ocean. Example of a seabird aggregation at the Columbia River
plume front. The largest red and blue peaks (in the center
of the graph) indicate the highest numbers of birds
counted along a 27 kilometer transect. Greatest predator

numbers occur at the plume front, the area where salinity
(white line) changes abruptly from about 15 to 30. The

(photos and data courtesy of Northwest

Fisheries Science Center) plume front is the boundary between two water types: the
ocean and the Columbia River.




Two distinct issues are affecting the estuary and coastal ecology of California. |
state two but they are clearly linked:
«Climate Change
« Warmer temperatures over California
« Change in precipitation
eL_ess precipitation
*More rain, less snow
o Stronger winds — Land temperature increasing faster than ocean; Jet stream
cycle fluctuations
* More persistent winds
* Winds at different time
Direct Anthropogenic effects
 Stream Regulation
 Watershed development
eLoss of wetlands
*Hydromodification - effects of urbanization on runoff and stream flows
*Other issues
* Invasive species
* Management masking events — e.g. artificially propagated fish can mask
declines in natural populations caused by a lack of suitable habitat.
« Water quality







Variation in species response to
environmental variability and
climate change: salmon and cod as
examples

Louis W. Botsford?, Lee Worden?, Michael J. Fogarty?,
Francis Juanes3, Alan Hastings?!, Steven Teo!, Matt Holland?,
Will White?, and Hui-Yu Wang3

1 University of California, Davis
2 National Marine Fisheries Service, Woods Hole
3University of Massachusetts, Amherst




Question: How will fish population
dynamics respond to climate change

Salmon, cod as examples




California
Current salmon

Both coho and chinook
salmon respond to ENSO

Coho salmon collapsed
coastwide mid-1970s

Chinook
salmon did not

Same time as change
in PDO index

Latitude

Latitude

Pacific Decadal Oscilation

£
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37°
1950 1955 1960

> - _
1965 1970 197

5 1980 1985 1990

Normalized Catch
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Question: How? (population dynamics)

Caused by changes/ variability in individual growth rate?

OR survival rate? At what age(s)?

Observations same in abundance, recruitment,
spawhnhers?

Do long term changes in survival (e.g., fishing, climate)
matter?

Why did coho decline coastwide, not chinook?

What is the contribution of population dynamics?




Answer: Analysis of age structured model with
density-dependent recruitment (Beverton-Holt)

R(P(1)) y — R(P(t)) = aP(t)

s(t) i (2 — 1) 1+ 8P(t)
s(t) zy(t — 1)
(i) = F(Z(t - 1),t) =
s(t) on_alt — 1)

(1= de(t)) s(t) zn_2(t — 1)

Age vector

ai(t) s(t) Tn_1(t — 1)

Pacific salmon model, e.g., chinook and coho




Answers expressed in terms of sensitivity to

time scales of variability, i.e., spectral response
to changing climate

a. NINO3 Sea Surface Temperature

< 11 5y |1
Example: g 3 ""v‘:wbb‘l LJ \FH*[M’U{% I l j m
Changing 'IBBﬂ 19DD 19@{_‘{]“{‘]'%:?} 195‘3 193[]
spectrum of e e
ENSO, 1870- [
1997 8 e

Torrence and Compo (1998)




Answer to: Does point of action make a

difference?
Sensitivity of coho salmon recruitment to time scales of

variability in the environment:

Varying ocean survival

x 10

0 0.1 0.2 0.3 0.4 0.5

0.5}

0

Varying growth or
development rate
x 10°

Cohort resonance

Period~3y, dominant age of
spawning

0 0.1 0.2 0.3 0.4

frequency (y'1)

0.5



Time series: varying survival vs. growth rate
(white noise)

Recruits

Recruits

- development rate

20




Answer to: Does result depend on mode of
observation (e.g., recruitment, abundance, catch)?

Example: CCS chinook salmon, variable growth rate

Observing: Recruitment Abundance

x 10

10000 - . . , 2

8000

6000 |

UHJ’UE

4000
Period~4, dominant age
2000} of spawning
U i i § i 0 i i i i
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

Cohort resonance . e o



Time series: Observation of recruitment vs. abundance.
(white noise driving growth rate)

Recruits

Total Stock




Answer to: What are effects of long-term decline in
survival (e.g., fishing, climate)?

1. Equilibrium declines, could collapse

2. More sensitive to interannual variability

0.14

Example: o2l
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CCS Coho salmon with different ocean survivals, and
time varying growth rate (white noise)
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Changes in equilibrium and frequency response, as long-
term survival changes

Recruits

0 |
0 0.5 1 15 2 2.5 3
Spawning Stock Y 10°



Time series of coho salmon at different constant ocean
survivals, and time varying growth rate (white noise).
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Applications:
1. sockeye salmon in Pacific
2. Atlantic cod




Fraser River sockeye (cycles common, period 4)

Cyclic dominance
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Bristol Bay sockeye (cycles rare, period 5)
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What causes cycles, period?

e Cycles at low survival, equilibrium and narrow
spawning age distribution

* Period = age of dominant spawning

Can age structured model with DDR
cause “cyclic dominance”?

Yes, at low survival with variability in both
survival and spawning age distribution.




Practical application

Total Fraser

®
>0me Sockeye

salmon populations Y —

declining Fl :

e
Are cycles an

indicator of

sensitivity of

equilibrium to

ocean survival? ox

1952 1960 1968 1976 1984 1992 2000 2008

Total Return(ratio to cycle average)

Return Year

Mike Lapointe




Atlantic cod variability in life history

o Effect of life history on equilibrium
o Effect of life history on response to variability




Growth rate varies with location
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Frop of Maturity

Spatial variation in maturation schedules
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The future

 Explore ENSO, PDO, NPGO and other
predictions from GCMs.
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Forecasting returns of coho and Chinook
salmon in the Northern California Current:
a role for high-frequency long-term
observations

Bill Peterson, Senior Scientist
NOAA Fisheries
Hatfield Marine Science Center

Newport Oregon
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-See www.nwfsc.noaa.gov, "Ocean Index Tools"
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Some First Principles

» Common perception is That salmon leave the rivers
and enter a black box (the ocean) and magically (and

luckily) they return after being away for a year or
two (or more).

* Rates of return from the ocean are quite variable
among years, and results are often filled with many
surprises.

+ After 14 years of research we think we have worked
out what it is about ocean conditions that leads to
variable returns.

* And, we have gone boldly where others have gone
before, and think that we can forecast returns of
salmon to rivers at least in a qualitative manner



What are we doing to learn about climate
change, marine ecosystems and salmon?

* Making lots of observations, at sea

*+ Working with computer models/modelers at Oregon
State University, Georgia Tech and Princeton Univ.

* Meet with watershed managers, Columbia River power
managers, fisheries managers, teachers and the
general public, to educate them, through talks and our
web-page, on how ocean conditions might affect living
marine resources.

See www.nwfsc.noaa.gov, “Ocean Index Tools”
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Approach

1. Develop time series

2. Relate to salmon through
simple bivariate analyses
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Here are some images of two types of plankton,
copepods and krill, that play key roles in a
salmon’s food web

. -




Observations
48°

 aairs | © Newport Line biweekly
N K =" | sampling since 1996 (15th
N u | year)

47 Grays Harbor

- Juvenile salmon sampling
in June and September
since 1998 (13th year)

Willapa Bay

46° Columbia River

capelaEH oo e 3 -Historical data:
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Four factors affect plankton, food chains,
pelagic fish and the growth and survival
of salmon in the northern California

Current
» Large-scale circulation patterns and the kinds of
water that feed the California current

- Seasonal reversal of coastal currents: southward in
summer - northward in winter

» Coastal Upwelling
* Phase of the Pacific Decadal Oscillation (PDO)

Everything is on the the web
at: http://www.nwfsc.noaa.gov
"Ocean Index Tools"



Oceanography 101
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Circulation off the
Pacific Northwest

Subarctic Current brings cold
water and northern species
to the N. California Current;

The West Wind Drift brings
subtropical water and subtropical
species to the N. California Current

Therefore, ecosystem structure
is affected by the source waters
which feed the California Current.



Local winds drive currents and
cause upwelling along the coasts of
Washington, Oregon and California

Upwellmq)




Winds and current structure Winter> Tw

off coastal Oregon:
*Winter: s OR
- Winds from the South 1> fNeweer
- Downwelling o
- Poleward-flowing Davidson Current
- Subtropical and southern plankton species N
transported northward & onshore |
- Many fish spawn at this time -

-Spring Transition in April/May @Eer;

*Summer:
- Strong winds from the North
- Coastal upwelling

OR

&N

“T— * Newport

- Equatorward alongshore transport aN
- Boreal/northern species transported
southward - ¢

‘Fall Transition in October o




The PDO has two
phases, resulting from
the direction from
which winds blow in
winter.

The SST anomaly
patterns shown on the
right results from
basin scale winds: W'ly
and NW'ly [negative
phase] and SW'ly
[positive phase]

Westerlies dominated
last winter (07-08)

and now this winter.

PDO & SST

Negative Phase Positive Phase
1948-1976 1925-1947
1998-2002 1976-1998
2006- 2003-2006

Blue is anomalously cold
Red is anomalously warm
Neutral PDO means there
Is no pattern.



PDO Index
(sum of May-Sept)

PDO: May-Sep Average, 1925-2009

5 War'm Reglme ~ Cool Reglme War'm Reglme C

1930 1940 1950 1960 1970 1980 1990 2000 2010

From 1925-1998, PDO shifted every 20-30 years. Some refer to
these as "salmon” regimes (cool) and "sardine” regimes (warm).

However, we have had two shifts of four years duration
recently: 1999-2002 and 2003-2006, and another shift in late
2007, thus we have a natural experiment to test the affects of
PDO on marine food chains and salmon populations.

Note 2008: most negative PDO since 1950s!!



Anomaly of number of adults

returning to spawn
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Spring Chinook Salmon

1970 1980 1990 2000

PDO and salmon

» Spring Chinook

salmon counts at
Bonneville Dam track
the PDO. HUGE
RETURNS of fish in

2001-2003 surprised
everyone.

- PROGNOSIS:

negative PDO is good
for salmon; positive
PDO not good.



Contrasting Communities

Negative PDO = “cold-water” copepod species.
These are dominants in Bering Sea, coastal GOA,
coastal northern California Current

— Pseudocalanus mimus, Calanus marshallae,
Acartia longiremis

Positive PDO = “"warm-water” copepods. These
are common in the Southern California Current neritic
and offshore NCC waters

— Clausocalanus spp., Ctenocalanus vanus,
Paracalanus parvus, Mesocalanus tenuicornis,
Calocalanus styliremis

Based on Peterson and Keister (2003)



Comparisons in size and chemical
composition

- Warm-water taxa -

- Cold-water taxa —

(from offshore OR) are

small in size and have C g
limited high energy wax Therefore, sngmfucgn’rly
ester lipid depots different food chains may

result from climate shifts:;

(boreal coastal species)
are large and store wax
esters as an over-
wintering strategy




A working mechanistic
hypothesis: source

waters.
Cool Phase =2

Transport of boreal
coastal copepods into
NCC from Gulf of
Alaska

Warm Phase 2>

Transport of sub-
tropical copepods into
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Yearling Coho Salmon Yearling Chinook Salmon  Subyearling Chinook Salmon
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Forecasting -- since we know that juvenile
salmonids live in continental shelf waters,
we use indices relevant to shelf waters

Basin scale indicators
- PDO
- MEI

* Local indicators
- SST
- Upwelling
- Date of spring transition
- Length of upwelling season

Biological indicators

- Copepod biodiversity

- N. copepod biomass anomaly

- Copepod Community Structure

- Catches of spring Chinook in June
- Catches of coho in September



Values of ocean condition parameters

used in forecasting

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

PDO (December-March)

5.07

-1.75

-4.17

1.86

-1.73

7.45

1.85

2.44

1.94

-0.17

-3.06

-5.41

PDO (Sum May-September)

0.9

-5.54

-3.23

-2.95

-0.47

3.42

2.21

3.94

0.28

0.18

-6.08

-1.11

SST 46050

deg C

13.70

13.14

12.54

12.56

12.30

12.92

14.59

13.43

12.60

13.88

12.5

13.02

SST NH 05 Winter Before

deg C

12.11

10.52

10.26

10.31

10.01

10.81

11.32

11.07

10.92

9.96

9.03

9.63

Physical Spring Trans Lot

Day of Yeal

105

91

72

61

80

112

110

145

112

74

89

82

Upwelling Anomaly (April-

May)

-14

19

-12

-27

-55

-14

Length of upwelling seasc

days

191

205

208

173

218

168

178

132

194

200

180

201

Copepod richness

no. of speci

5.49

-2.46

-3.03

-0.41

-0.72

1.52

0.57

5.02

3.67

-0.39

-0.53

-0.35

Northern Copepod Bioma

log biomas:

-1.97

0.084

0.717

0.486

0.834

-0.08

0.262

-1.74

0.163

0.617

0.87

0.662

Biological Transition

Day of Yeal

187

119

96

129

120

156

131

206

150

81

63

83

Copepod Community stru

X-axis ordir

0.726

-0.82

-0.82

-0.78

-0.98

-0.18

-0.14

0.541

0.15

-0.66

-0.96

-0.8

June-Chinook Catches

fish per km

0.26

1.27

1.04

0.44

0.85

0.63

0.42

0.13

0.69

0.86

2.55

1.00

Sept-Coho Catches

fish per km

0.11

1.12

1.27

0.47

0.98

0.29

0.07

0.03

0.16

0.15

0.27

0.01




Stoplight Chart

Environmental Variables 1999| 2000| 2001| 2002| 2003| 2004| 2005| 2006| 2007|2008, 2009
5 8 7 6

PDO (December-March)

PDO (May-September)

SST at 46050 (May-Sept)

SST winter before going to sea

Physical Spring Trans (Logerwell)

Upwelling (Apr-May) |

Length of upwelling season

Copepod richness

N.Copepod Anomaly

Biological Transition

Copepod Community structure

June-Chinook Catches

Sept-Coho Catches

Mean of Ranks of Environmental Dj

RANK of the mean rank




Counts of Adult Salmon at Bonneville Dam

500000

400000 -

300000 -

200000 -

100000 -

0

Spring Chinook
R-sq = 0.57, p = 0.007

700000
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14

600000 -

500000 -

400000 H

300000 -

200000 -

100000

Fall Chinook
R-sq = 0.52, p = 0.012

300000 0

2 4 6 8 10 12

14

200000 -

100000 -

Coho

® 2001 R-sq = 0.51, p = 0.008

2 4 6 8 10 12
Rank of the Mean Ranks

14

A simple approach
to forecasting

Regression of salmon counts
at Bonneville Dam with the
rank of all variables
combined

Chinook that went to sea in
2008 will return next year at

hear record numbers (record
was 604,200 in 2003 (fall)
and 414,628 in 2001 (spring)

Of the Coho that went to sea
in 2008, 224 592 were

counted at Bonneville Dam

Coho that went to sea in
2009 are expected to only
reach about half that value.



A chain of events (in a perfect year)

- Changes in basin-scale

winds lead o sign Negative Positive
changes in PDO

« SST Changes as do COld/SC(ITy Warm/fresh
water types off Oregon

» Spring transition Early Late

» Upwelling season Long Short

» Zooplankton species Cold species Warm species

» Food Chain Lipid-rich  Lipid-deplete

+ Forage Fish Many Few

» Juvenile salmonids Many Few

But time lags can complicate interpretations!
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PDO Values
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X-axis ordiniation anomalies

PDO and Plankton off the Oregon coast
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Changes in marine food chains

Photo taken just outside Ucluelet near Tofino BC...
Published in <www.westcoaster.ca>



Are we seeing any indication of changes in copepods over
the past 40 years?

NHO5 -- Copepod Species Richness
BLUE = summer; RED = winter
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- 69-73 = 6.68 species

- 96-08 = 10.24 species

- Despite recent cold ocean conditions we still see high species richness.



Oxygen concentrations at a mid-shelf
station off Newport

Oxygen concentration (mL L'l)

Oxygen concentration at 50 m depth at
NH 05 (station depth = 60 m)
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Modeling the Effects of Future Outflow
on the Abiotic Habitat of an Im uarine Fish

Fred Feyrer, US Bureau of Reclamation
Ken Newman, US Fish and Wildlife Service
Matt Nobriga, CA Department of Fish and Game

Ted Sommer, CA Department of Water Resources Delta smelt Hypomesus transpacificus







Longfin smelt Delta smelt

Abundance index
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(Greatly) Generalized Delta Smelt Life Cycle

Winter

Summer




(Greatly) Generalized Delta Smelt Life Cycle

Winter

Maturation
Low salinity zone

/

Summer




(Greatly) Generalized Delta Smelt Life Cycle

Winter

Spawning
Fresh water

Summer




(Greatly) Generalized Delta Smelt Life Cycle

Winter

Juvenile rearing
Fresh water — Low salinity zone

Summer




(Greatly) Generalized Delta Smelt Life Cycle

Importance of Fall

= Y, of delta smelt life span

= Juveniles mature into adults

= Estuarine dependency

= Setting up for spawning migration




Fall Midwater Trawl Survey
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Long-term Habitat Trend — not good!
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Spatio-Temporal Patterns of Habitat Change

No Change

V¥ Greatest Change

Feyrer, Nobriga, Sommer. 2007 .CJFAS




Spatio-Temporal Patterns

Increasing




Constriction of Habitat Space




X2 Affects Abiotic Habitat and Distribution
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Low X2 expands habitat into
broad shallow downstream bays
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Modeling Future Scenarios

THE

MIE?“ENE Modeled X2

H. G. WELLS

X2-habitat relationship

AR

Predicted future habitat

T




Model Hierarchy for CASCaDE Watershed Modeling

Global Climate Model
Bay-Delta Watershed Model

CALSIM Management and =
USBR Stream Temperature Models

Dan Cayan &
Mike Dettinger)

Final Output: 100 years of projected

stream temperatures and Noah Knowles
flows throughout watershed ( )

Slide from Larry Brown, Plenary Session




Modeled Future Scenarios

Water demand

Climate change relative to the present

2005 (present day scenario)
2030
2030
2030
2030
2030
2030

n/a

n/a

0.3-meter increase in sea level
Wetter and warmer

Wetter and warmer still

Drier and warmer

Drier and warmer still

Output generated by CALSIM |l — statewide water planning tool

Source:

Brekke, L. 2008. Sensitivity of future Central Valley Project and State Water Project operations to
potential climate change and associated sea level rise. Appendix R of OCAP BA on the continued

long-term operations of the CVP and SWP.




Potentially Large Decreases in Abiotic Habitat

Habitat index

SC

00

Q000

A B E:[] E F G

1 - wet E al:n:me ﬂmrmal 3 - below normal
q ‘ ‘ |

i ‘““Tﬁ-.i-- .-'--—_

4 - dry 5 - critical L BECDETFG

0o muac

ABCDEFG

Scenario

- G000

- G000

4000



Climate Change Exacerbates Water Demand

| 1-ft sea level rise

0.01
-0.11
-0.21
-0.31
-0.4 1

0311 wetter/warmer 5 004 | Wetter/warmer still

Fractional difference from study A

Study B fractional difference from study A




Habitat Index for Fall Delta Smelt as Defined
rer et al. in review)

by Salinity and Turbidi

Delta smelt habitat index

Delta smelt habitat index
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The Delta is clearing

GFDLA2

I I
baseline RVS data

I constant supply
I decreasing supply
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Slide from Larry Brown, Plenary Session




Summary

*Future development and climate change pose a
potentially serious threat to the habitat of estuarine
biota such as delta smelt.

*Scenarios NOT predictions!




Ecologic Response to Climate-Change Induced Water
Temperature Changes in the Sacramento-San Joaquin
Delta

March 13, 2010

R. Wayne Wagner?, Mark T. Stacey?, Larry R. Brown?, and Michael Dettinger?
Department of Civil and Environmental Engineering, UC Berkeley
2U. S. Geological Survey

This work was funded by CALFED as part of the CASCaDE project.



Motivation

* San Francisco Bay-

| . Forcmg on the system W|||

- continue to change in the

\ ——

.."Comlng century

;- - Water temperatu*r-e..
"imodellng and the Delta
ecosystem >



Modeling Approach

CLIMATE
GCMs and
downscaling

HYDRODYNAMICS
Temperature Model

FISH
Thermal-Tolerances




Overview

e Study site and data sources

« Water temperature model
Downscaled climate data and forecasts
) _ « Ecological implications

Bt . Smaller scale
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Sacramento-San
Joaquin Delta

Current conditions

\ “Physically altered
Levees |
e Subsidence
Pumps

Mk | |  Freshwater malntalned
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Sacramento-San
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Data Sources for |
Model Development .
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Water Temperature Model

e Pure Statistic Model
— Mulitple linear regression at each location

?-:L'L’EE'ET (t} = bl:l + blTWﬁE'E?' (t — 1:} +- bZTﬂf‘.i" (t} + bBT'Ct}

— T, refers to average of daily max and min
— Can be used to predict T, ;.o Twavgr Tw,min
"l | + Data split for calibration/verification
" — Calibrate with first half for b, b,, b,, b,
— Initialize second half w/ measured data




Water Temperature Model

Calibation r2=.977
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Water Temperature Model

Calibation r2=.977
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Water Temperature Model

30Calibration r2 = 955
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Water Temperature Model
Qalibratipn r2 = .969
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Water Temperature Model

Calibration r2 = .969
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Water Temperature Model
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Water Temperature Model
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» Measurements lead model during cooling periods.
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Water Temperature Projections

« Statistical model
— Verification r? >0.95 provided enough calibration data.
— Timing off seasonally in some locations.

=  Projection

& — Calibrate with full dataset.

— Initialize with measured water temperature.

— Force with downscaled GCM data for 4 scenarios .




Water Temperature Projections
@ RIo Vista
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Ecological Implications
@ Rio Vista Smelt threshold
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Ecological Implications
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- Dramatic increase in the number of days exceeding
259C under this scenario at Rio Vista.
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Ecological Implications

Sac Rio Vista
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Latitude
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Dot size is proportional to the average number of days per year in
exceedence of 25°C at each location under GFDL A2 forcing.
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Latitude

Projections (2070 - 2090)
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@ RIo Vista

Water Temperature Projections
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Ecological Implications

@ Rio Vista Smelt threshold
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Ecological Implications
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Ecological Implications

Sac Rio Vista
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Ecological Implications
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Ecological Implications

135

130

1151

Median Julian Day of Spawning Temp

110
— GFDL A2
1051 GFDL B1
——PCM A2
-~ PCMB1

| | | | | |
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Year




Present Work

* Despite warming trends, small scale dynamics may
play a role in providing refugia for thermally
sensitive species

r~ + Cache Slough
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Conclusions

Simple statistical model shows high predictive skill of
water temperatures at locations throughout the Delta

When forced by downscaled climate data:

— The model predicts much higher frequency of exceedence of
25°C along Sacramento corridor.

— Spawning temperatures for smelt move earlier in the year

Smaller scale temperature dynamics may be
Important for fish survival
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Calibration periods > 1 year greatly improve
predictive skill of the model.
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What Do Resource Managers
and Researchers Need In

Planning for Climate Change?
Russ Bellmer

Califerig,DepantmentorFish
and'Game
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Political setting
Potential environmental changes
Potential monitoring needs

Some thoughts mixed In
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What do the politi€ians say
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SERVICE

Dr. Jane Lubchenco

"‘2 Under Secretary for Oceans & Atmosphere
¥ NOAA Administrator
%% February 8, 2010
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Pacific Decadal Oscillation

positive phase negative phase




o mmonthly vaives for the PO index: 1900--2001
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Discovering Secrets
of Salmon
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= [nformation at the appropriate ife stages
and spatial scales to evaluate adult

salmonid abundance

= Productivity calculated as the trendhin
abundance over time

pEollectionof juvenile distiibution.anddiel atives
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« [ife cycle fixed stations
= Surveys selected randomly and spatially:
balanced for juveniles

= Habitat assessments
= Genetic diversity
siVarking hateheries fish
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~ Species
Distributions

- Oceanography




= Regional surveys for more species
= Species sunveys that sample all habitats
= |ncreased frequency of surveys

= Surveys designed to track the abundance

= |ncreased catch and bycatch samples

= Jierieasedispatial resolution ofi catch data

=1 SPECIES SUVEYENETEasedienvaionimental information
P Data management
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=Ishrneed water -- known

How muchand when -- not known
_Iving among cold water fish

Non intrusive sampling

Salmonid population trends
— Landings
— Hatcheries returns

" _|n river monitoring
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Some people depand on

salmon for their jobs:
commercial fishers;
fishing guicles;

pecple who make
fishing gear and boats;
and people who

work in canneries

and fish markens

Salmon are part of a
healthy ecosystam.
Many animals eat
salmon: bears, eagles,
soa lions, killer whalaes,
and maore. Whan zalmon
numbers decrease, these
animals do also.

\ i !!1;

ﬁ. L

Salmon are an important part
- of the culture and livelihoods

Many pecple enjoy
watching salmon
as they migrate

upstrearn and spawn. Y,
v ﬁ \]




— Thanks to State & Federal Government for
theriunding Salmonid restoration

= Thanks to NOAA and DWR staff for
discussions about temperature changes

= Thanks to the DFG staff and others for
challenging conversation and INputs

“=HlViost ofialitienksitotheypeoledoing this
f-'outstandlng WOrk
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= understands the essential principles of Farth’s
climate system,
knows how to assess scientifically credible
Information about climate,

communicates about climate and'climate change
In a meaningful way, and
SIS AbIE to, make informed and responsible
:d-edsionsw‘itmg'ard (Gractions that may.
" affect climate




Salmon life history stages
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Fig. 1 Phenologies of reproductive events in freshwater phase of Chinook salmon life-cycle in the SV
watershed. open square adult immigration; open upright triangle spawning and hatching; open diamond
juvenile emigration. Compiled from data in NOAA (2001), DWR (1988), and U.S. DOI (1996)
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= workshop on' natural resource mitigation,
adaptation and research needs related to
climate change in the Great Basin and

Mojave Desert

= University of Nevada, Las Vegas on April 20
02242010

= WRUBESIaoVorksHops/
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It’s
complex

We don’t
have all the

data
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- Ab(mdance
= Productivity
= Spatial structure

= Diversity
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= The physical and'plankton properties of the California
Current Ecosystem

= Many primary measurements needed
= |ncreased coordination and integration of. datalases

between west-coast regional ebserving systems
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= unusual conditions affectlng Sacramento River faII-
run Chinook from the 2004 and 2005 brood years that
could explain thelr poor performance, reaching the
conclusion that unfavorable ocean conditions were the

proximate cause.
“But what about the ultimate causes?”
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