Water Available for Replenishment

Appendix A: Water Available for Replenishment Information and Estimates

This page left blank intentionally.

Table of Contents

Introduction	4
WAFR Information and Estimates	6
Surface Water and Groundwater Information	6
Methodology for WAFR estimates	6
Gage Data Method 1	15
WEAP Model 1	15
Potential Water Development by Other Methods (recycled water, desalination and water conservation)	30
Urban Water Portfolio Actions	30
Water Conservation	30
Recycled Water	32
Desalination	33
North Coast Hydrologic Region	35
San Francisco Hydrologic Region5	55
Central Coast Hydrologic Region	17
South Coast Hydrologic Region	36
Sacramento River Hydrologic Region)5
San Joaquin Hydrologic Region	15
Tulare Lake Hydrologic Region	23
North Lahontan Hydrologic Region13	30
South Lahontan Hydrologic Region14	15
Colorado River Hydrologic Region	51
References	76

Introduction

SGMA directed the Department of Water Resources (DWR) to provide assistance to local agencies, including the preparation of a report "...that presents the department's best estimate, based on available information, of water available for replenishment of groundwater in the state" (California Water Code section 10729(c)). The Water Available for Replenishment (WAFR) report provides DWR's estimates of WAFR in the state, based on available information. Groundwater Sustainability Agencies (GSAs) can and should consider the water available from other methods. Estimates of potential water development by urban retailers using other methods (recycled water, desalination, and water conservation) are also shown in this appendix. These estimates are provided to indicate the scale of planned water development by urban retailers for each region during this decade.

As part of development of the WAFR Report, a series of technical analyses were conducted to provide DWR's estimates of water available for replenishment in the state, based on available information. An important step in conducting these analyses was to establish existing information and tools. For the purposes of this report, *information* refers to information obtained from existing studies and/or reports, whereas *estimates* refer to the analysis done under this report. WAFR information and estimates, and potential water development by other methods is provided by Hydrologic Region. In addition, WAFR information and estimates are also provided for the State's 56 Planning Areas. California Hydrologic Regions and Planning Areas, as defined by the California Water Plan, are shown in Figure A-I1.

Figure A-I1. California Hydrologic Regions and Planning Areas

DWR's estimate of water available for replenishment is shown for each of the state's 10 hydrologic regions and 56 planning areas. The information and models used to estimate the amount of water available for replenishment were developed at a planning estimate level. This analytical approach will not meet requirements of a Water Availability Analysis (WAA), as required for a water right application, permit, or change to an existing right. Additional study and data refinement would likely be necessary for such a determination. More detailed, location- and project-specific analysis will need to be conducted by the GSAs as part of their Groundwater Sustainability Plans (GSPs).

The organization of this appendix is as follows:

- <u>Introduction</u> section provides background information and discusses limitations of the analysis.
- <u>WAFR Information and Estimates</u> section describes the WAFR information and estimates methodology.
- <u>Potential Water Development by Other Methods</u> section describes the methodology used for estimates of potential water development by other methods (recycled water, desalination and water conservation).
- The remaining sections describe the WAFR information and the estimates and potential water development by other methods by Hydrologic Region (<u>North Coast, San Francisco</u>, <u>Central Coast, South Coast, Sacramento River, San Joaquin River, Tulare Lake, North</u> <u>Lahontan, South Lahontan and Colorado River</u>).

WAFR Information and Estimates

WAFR information and estimates are provided at both the Hydrologic Region and the Planning Area. The data source for the information and the methodology for the estimates are provided in the following sections.

Surface Water and Groundwater Information

Surface Water and groundwater information for the hydrologic region includes regional imports, regional exports, groundwater pumping, natural recharge, and applied recharge. Surface Water information for the planning area includes regional imports and regional exports. Regional imports and regional exports were retrieved from the CalSim II model developed under the State Water Project Delivery Capability Report (DCR) 2015, the California Water Plan Update 2013, DWR Bulletin 132, and other federal, State, or local data. Groundwater pumping and applied and artificial recharge was retrieved from the California Water Plan Update 2013 Water Balances (average of 1998-2010). Natural recharge (average of 1981–2010) was retrieved from the 2017 U.S. Geological Survey (USGS) Basin Characterization Model (BCM) (United States Geological Survey, California Basin Characterization Model 2017). Please note that the groundwater information comes from various sources, does not satisfy a groundwater budget, and is presented for comparison of groundwater information with the WAFR estimates.

Methodology for WAFR Estimates

WAFR estimates have been calculated at two scales: Hydrologic Regions and Planning Areas, as identified in California Water Plan Update 2013. This appendix summarizes the estimates for each of the State's 10 hydrologic regions and 56 planning areas. For the purposes of these estimates, water available is assumed to be dedicated to replenishment, and replenishment capacity is assumed to be unlimited.

WAFR estimates were determined by combining information from monthly simulated Water Evaluation and Planning (WEAP) model outflows and historical daily gage data. The following discussion refers to these two tools, WEAP and gage data.

- The WEAP model simulates historical surface runoff by using 1967 through 2012 precipitation data, existing urban and agricultural demands, and operations information. After meeting demands, the remaining runoff is outflow. Consequently, the WEAP-simulated outflow represents historical hydrologic conditions and a fixed, existing level of demand and operations.
- Historical gage data at a river mouth represents actual outflow conditions that result from changing levels of demand, regulations, and operations over the period when gage data are available.

Both WEAP and gage data have specific advantages and limitations when used individually (Table A-SW1). For these reasons, the tools were combined to capture the advantages of each.

Tool	Advantages	Limitations
WEAP	 Based on current level of development (demands) and operations. Incorporates the entire study area. 	 Monthly outflow provides limited resolution.
Gage Data	- Daily data provides high resolution.	 Historical record is affected by changing demands and operations. Incorporates gaged watersheds only.

Table A-SW1. Advantages and Limitations of the WEAP model and the historical gage data tools

The WAFR estimates were calculated in two steps:

- 1. Determine the WAFR fraction The percentage of gage data outflow that can be diverted by a conceptual project(s). The term conceptual project is used in this report to identify a potential surface water diversion for the purpose of groundwater replenishment, and is described below.
- 2. Determine the WAFR estimate The product of the WAFR fraction and the WEAP outflow.

These two steps can be described using the following equations:

1. $WAFR\ Fraction = \frac{Diversion\ from\ Conceptual\ Project}{Gage\ Data\ Outflow}$

2. WAFR Estimate = WAFR Fraction×WEAP Outflow

In order to determine the WAFR fraction, the following, more detailed, procedures were used:

- 1. Flow gage data were collected as close to the outflow location as possible, where streams/rivers leave a hydrologic region.
- 2. An instream flow requirement was determined to support and maintain water quality and aquatic and riparian species*. These flows provide habitat, species protection, and water quality, and are not available for diversion and replenishment (see Figure 3). The assumed instream flow is based on existing federal, State, or local requirements or studies. If existing federal, State, or local requirements did not exist, the instream flow requirement would be based on the water right, the SWRCB's Policy for Maintaining Instream Flows in Northern California Coastal Streams, or the Tennant¹ method. For these WAFR estimates, the instream flow requirement to maintain aquatic and riparian species is assumed to be constant throughout the year. In most cases, a range of flows, by season, is required and necessary to support the ecological processes needed for a healthy stream. The instream flow requirement approach is shown in Figure A-SW1.
- 3. The conceptual project diversion was determined based on a new conceptual project capacity and the above instream flow requirement (see Figure A-SW2). For the best estimate, the new conceptual project diversion capacity is sized based on the largest existing diversion capacity on the stream/river associated with the watershed. This information was retrieved from the SWRCB's Electronic Water Rights Information Management System (eWRIMS).
- 4. WAFR fractions were calculated for each of the streams/rivers.
- 5. The WAFR fractions for all of the gaged streams/rivers were aggregated by hydrologic region. The aggregation process for multiple streams is described below.

Figure A-SW2 and Table A-SW1 show an example application of WAFR fraction development for a two streams, using the Best Estimate Conceptual Project assumptions to determine the conceptual project diversion.

¹ Tennant, D.L. 1975. Instream Flow Regimens for Fish, Wildlife, Recreation and Related Environmental Resources. U.S. Fish and Wildlife Service, Federal Building, Billings, MT. 30 Pages

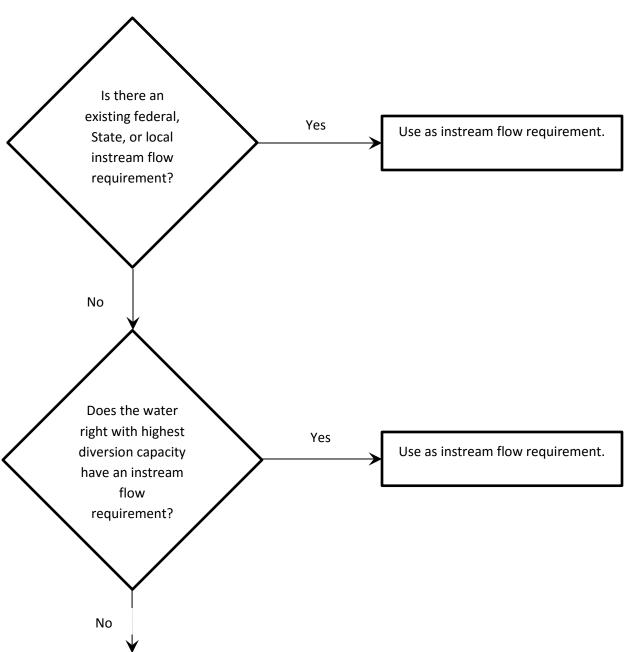
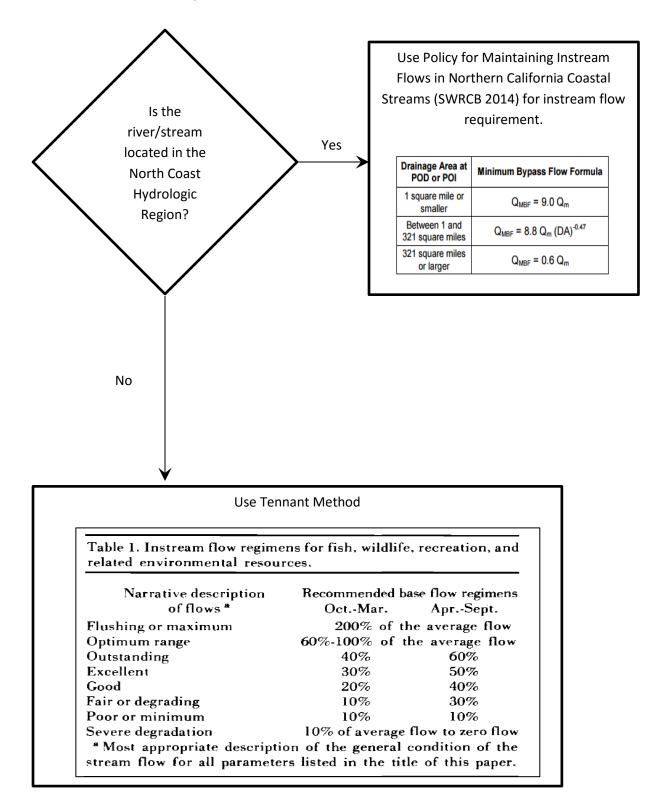
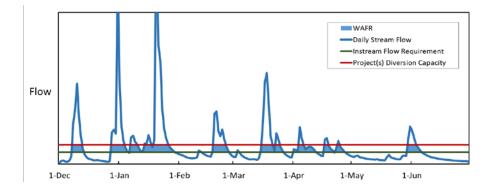




Figure A-SW1. Instream Flow Requirement Approach

Using this procedure, DWR determined the WAFR fractions by acknowledging that the primary factors affecting the WAFR estimates are (1) project diversion capacity and (2) instream flow requirements to maintain ecosystems.

Figure A-SW2. Best Estimate Conceptual Project Application of Water Available for Replenishment for Multiple Streams

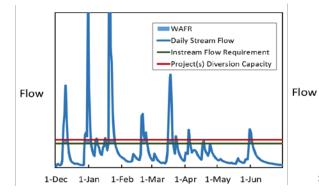
Table A-SW1. Best Estimate Conceptual Project Application of Water Available for Replenishmentfor Multiple Streams

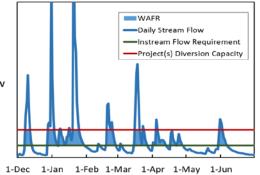
	Current Project Capacity				
River /Stream	Average Annual Outflow (TAF)	Conceptual Project Diversion (TAF)	WAFR Fraction		
Stream 1	400	10	2.5%		
Stream 2	230	8	3.6%		
Total	630	18	2.9%		

The WAFR fraction was aggregated by hydrologic region to have a better representation of the characteristic associated with the general diversions and instream flow requirement happening in the region. Table A-SW1 shows the method using two streams (Stream 1 and 2). Stream 1 has a WAFR fraction of 2.5 percent while Stream 2 has a WAFR fraction of 3.6 percent. For the example streams, using the Best Estimate Conceptual Project, the aggregated gage data outflow is 630 taf, the conceptual project diversion is 18 taf, and the WAFR fraction is 2.9 percent.

To underscore the uncertainty of these evaluations, DWR is also showing an extended array of WAFR estimates that illustrate the sensitivity associated with instream flow requirements and conceptual project assumptions. The array of conceptual project assumptions are described below and shown in Table A-SW2, and contain a range of diversion capacity and instream flow requirement.

The sensitivity range estimates columns are based on conceptual projects with capacities of one half to two times the largest existing project diversion capacity, while the instream requirements are up to two times the existing requirement.


The "Maximum Estimate" illustrates a maximum potential diversion or diversions, assuming unlimited project diversion capacity while maintaining existing instream flow requirements. This unlimited diversion capacity assumes technical and/or water management innovation associated with diversions.


The "No Project Estimate" demonstrates that surface water projects must be implemented to develop water that could be used for replenishment. No projects mean no water available and no new water available for replenishment. Figures A-SW3, A-SW4, and A-SW5 and the corresponding tables 1, 3, and 4 show the sensitivity of the conceptual project diversion to diversion capacity and instream flow requirement. The tables also show the WAFR Fraction.

Estimate Name	Conceptual Project Diversion Capacity	Conceptual Project Instream Flow Requirement	
Best Estimate	Largest existing project diversion capacity	Existing instream flow requirement	
Lower Sensitivity Range Estimate	One half the largest existing project diversion capacity	Two times existing instream flow requirement	
Upper Sensitivity Range Estimate	Two times the largest existing project diversion capacity	Existing instream flow requirement	
Maximum Estimate	Unlimited capacity	Existing instream flow requirement	
No Project Estimate	No Project	No Project	

These cursory estimates of water available for replenishment should not be considered refined values. Project- and location-specific analyses by GSAs will likely yield different results for the same streams because of project sizing, as well as updated and location-specific determinations of instream flow requirements.

Figure A-SW3. Lower Sensitivity Range Estimate (left) Upper Sensitivity Range Estimate (right) Conceptual Projects, with WAFR for Multiple Streams

	Lower Sensitivity F	Range Estimato Project	e. Conceptual	Upper Sensitivity Range Estimate. Conceptual Project		
River/Stream	Average Annual Outflow (TAF)	WAFR (TAF)	WAFR Fraction	Average Annual Outflow (TAF)	WAFR (TAF)	WAFR Fraction
Stream 1	400	5	1.2%	400	18	4.4%
Stream 2	230	3	1.3%	230	12	5.1%
Total	630	8	1.2%	630	29	4.6%

Table A-SW3. Lower and Upper Sensitivity Range Estimate Conceptual Projects for Multiple Streams

Figure A-SW4. Maximum Project Estimate of water available for replenishment

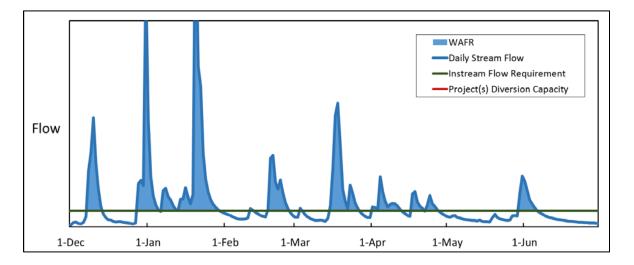
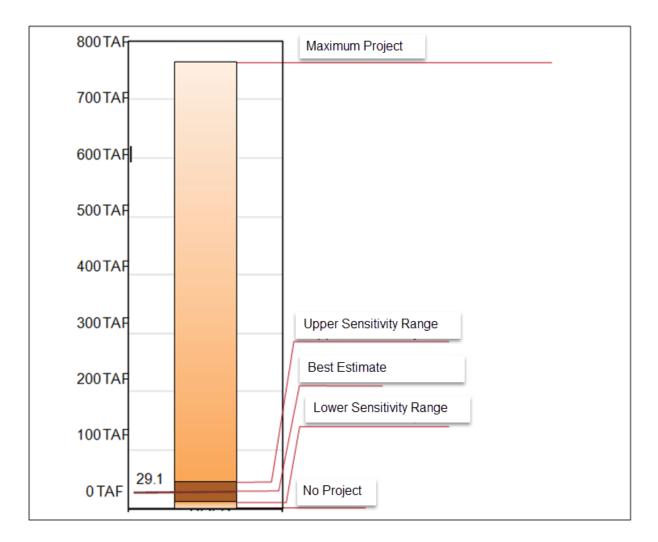


Table A-SW4. Example of Water Available for Replenishment Concept for No Project and MaximumProject and multiple streams

	No Pr	No Project Estimate			Maximum Project Estimate		
River/Stream	Average Annual Outflow (TAF)	WAFR (TAF)	WAFR Fraction	Average Annual Outflow (TAF)	WAFR (TAF)	WAFR Fraction	
Stream 1	400	0	0.0%	400	292	73.0%	
Stream 2	230	0	0.0%	230	189	82.5%	
Total	630	0	0.0%	630	482	76.4%	

The outflow estimate simulated using the WEAP model was then multiplied by the range of WAFR fractions defined by the historical gage data and conceptual project diversion to determine the range of WAFR estimates within the hydrologic region. Table 5 shows the array of WAFR estimates for the example stream, using the water available for replenishment fractions from tables A-SW1, A-SW3, and A-SW4 above.

Table A-SW5. I	Final WAFR	estimates	Example
----------------	-------------------	-----------	---------


WEAP Outflow (taf)	No Project Estimate (taf, WAFR Fraction 0.0%)	Lower Sensitivity Range Estimate (taf, WAFR Fraction 1.2%)	Best Estimate (taf, WAFR Fraction 2.9%)	Upper Sensitivity Range Estimate (taf, WAFR Fraction 4.6%)	Maximum Project Estimate (taf, WAFR Fraction 76.4%)
1,000	0	12	29	46	764

Note: taf = thousand acre feet

WAFR = Water Available for Replenishment

Figure A-SW5 presents the "Best Estimate," the "Sensitivity Range," as well as the "Maximum Project" and "No Project" WAFR estimates for the example described above.

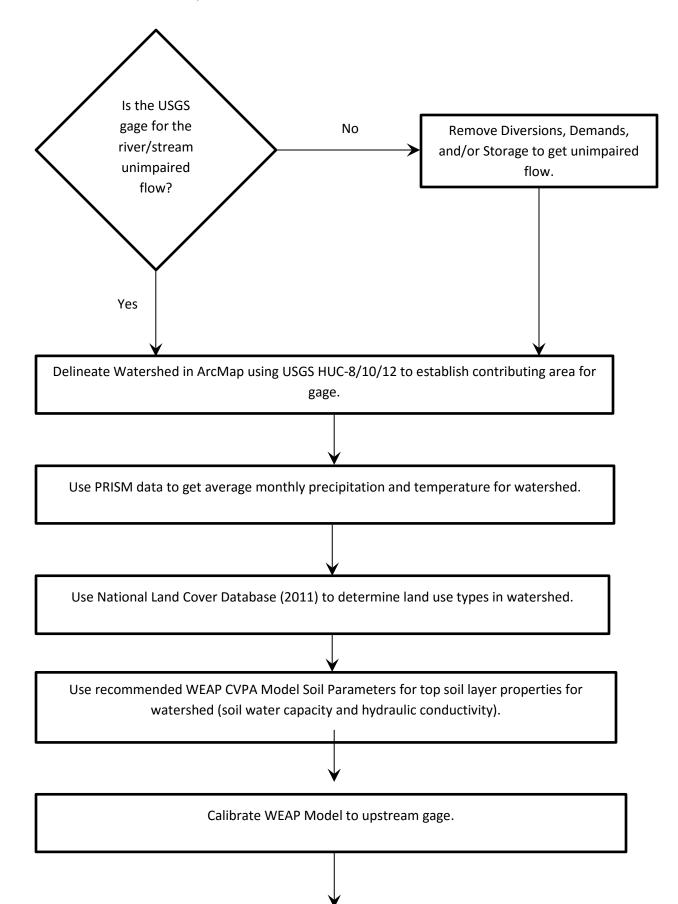
This array of estimates is made for each Hydrologic Region of the State and each Planning Area.

Gage Data Method

The Gage Data Method uses daily USGS gage flow data for major rivers and streams within each hydrologic region. For each river and stream, the outflow was assumed to be the most downstream gage in the watershed. Flow at the most downstream gage is assumed to represent the outflow of the stream/river (accounting for upstream diversions and demands).

WEAP Model

The Water Evaluation and Planning (WEAP) system is a comprehensive, fully integrated river basin analysis tool. It is a simulation model that includes a robust and flexible representation of water demands from different sectors, and the ability to program operating rules for infrastructure elements such as reservoirs, canals, and hydropower projects (Yates et al. 2005a, 2005b; Purkey and Huber-Lee 2006; Purkey et al. 2007; Yates et al. 2008; and Yates et al. 2009). Additionally, it has watershed rainfall-runoff modeling capabilities that allow all portions of the water infrastructure and demand to be dynamically nested within the underlying hydrological processes. This integration of watershed hydrology with a water systems planning model makes WEAP suited to study the potential effects of climate change and other uncertainties internal to watersheds. WEAP also provides a comprehensive, flexible, and user-friendly framework for planning analysis.


Overview

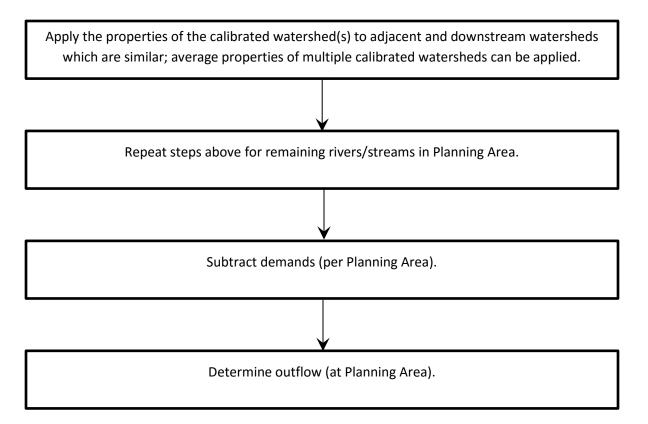

For the Sacramento River, San Joaquin River and Tulare Lake hydrologic regions, the Central Valley Planning Area (CVPA) WEAP Model, developed under the California Water Plan, was used. For the remaining hydrologic regions (North Coast, San Francisco, Central Coast, South Coast, North Lahontan, South Lahontan, and Colorado River), the Statewide Hydrologic Region Model (Statewide HR Model), developed under the California Water Plan, was used as the starting point for this analysis. The Statewide HR models were refined to the Planning Areas using the procedures shown in Figure A-SW6.

Figure A-SW6. WEAP Modeling Procedures

Draw WEAP Schematic and Enter Data

- Rivers/Streams (w/ gage data)
- Reservoirs
- Catchments
- Diversions
- Gage data

WEAP model functionality and a more detailed description of the steps in the WEAP Modeling Procedures are described in the following sections.

WEAP Water Allocation

WEAP allocates water based on two user-defined priorities: (1) Demand Priority and (2) Supply Preference. A demand priority is attached to a demand site, catchment, reservoir, or flow requirement, and is ranked from 1 to 99, with 1 being the highest priority and 99 the lowest. Demand sites can share the same priority, which is useful in representing a system of water rights, where water rights are defined by their water usage and/or seniority. In cases of water shortage, higher priority users are satisfied as fully as possible before lower priority users are considered. If priorities are the same, when there is a water shortage, the demand will be equally shared as a percentage of their demands.

When demand sites or catchments are connected to more than one supply source, the order of withdrawal is determined by supply preferences. Similar to demand priorities, supply preferences are ranked between 1 and 99, with lower numbers indicating preferred water sources. The assignment of these preferences usually reflects economic, environmental, historical, legal, and/or political realities. Multiple water sources may be available when a preferred water source is insufficient to satisfy all of an area's water demands. WEAP treats additional sources as supplemental supplies and will draw from these sources only after it encounters a capacity constraint (expressed as either a maximum flow volume or a maximum percent of demand) associated with a preferred water source.

WEAP's allocation routine uses demand priorities and supply preferences to balance water supplies and demands on a monthly time step. To do this, WEAP must assess the available water supplies each time step. While total supplies may be sufficient to meet all of the demands within the system, it is often the case that operational considerations prevent the release of water to do so. These operations are usually intended to preserve water in times of shortage so that long-term delivery reliability is maximized for the highest priority water users (often indoor urban demands). WEAP can represent this controlled release of stored water using its built-in reservoir routines.

WEAP uses generic reservoir objects, which divide storage into four zones, or pools, as illustrated in Figure A-SW7. These include, from top to bottom, the flood-control zone, conservation zone, buffer zone, and inactive zone. The conservation and buffer zones pooled together constitute a reservoir's active storage. WEAP always evacuates the flood-control zone, so that the volume of water in a reservoir cannot exceed the top of the conservation pool. The size of each of these pools can change throughout the year according to regulatory guidelines, such as flood control rule curves.

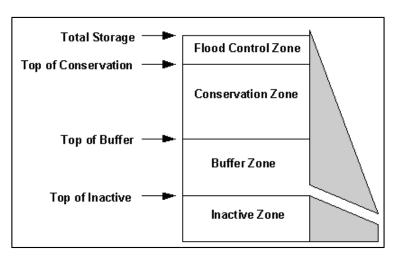
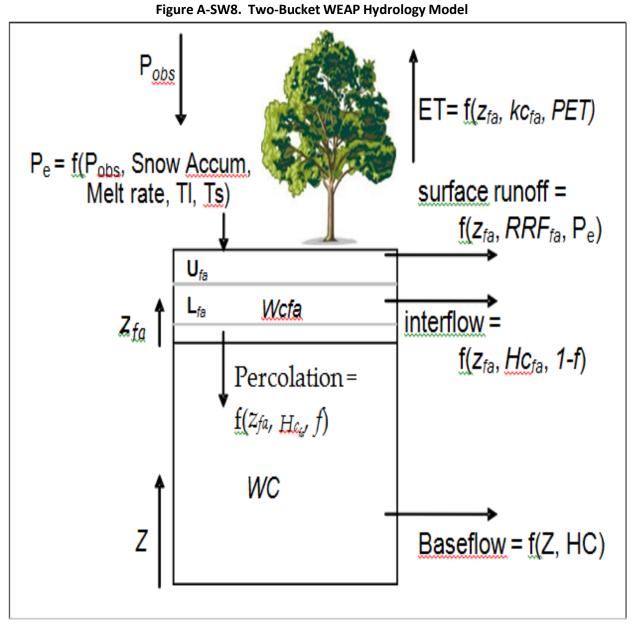


Figure A-SW7. WEAP Reservoir Zones

WEAP allows reservoirs to freely release water from the conservation pool to fully meet withdrawal and other downstream requirements. Once the reservoir storage level drops into the buffer pool, the release is restricted according to the buffer coefficient, to conserve the reservoir's dwindling supplies. The buffer coefficient is the fraction of the water in the buffer zone available each month for release. Thus, a coefficient close to 1.0 will cause demands to be met more fully, while rapidly emptying the buffer zone. A coefficient close to zero will leave demands unmet, while preserving the storage in the buffer zone. Water in the inactive pool is not available for allocation, although under extreme conditions evaporation may draw the reservoir below the top of the inactive pool.


WEAP Hydrology

The hydrology module in WEAP is spatially continuous, with a study area configured as a contiguous set of catchments that cover the entire extent of the represented river basin. This continuous representation of the river basin is overlaid with a water management network topology of rivers, canals, reservoirs, demand centers, aquifers, and other features (Yates et al. 2005a and 2005b). Each catchment is fractionally subdivided into a unique set of independent land-use or land-cover classes that lack detail regarding their exact location within the catchment, but which sum to 100 percent of the catchment's area. A unique climate data set of precipitation, temperature, relative humidity, and wind speed is uniformly prescribed across each catchment.

A one-dimensional, quasi-physical water balance model depicts the hydrologic response of each fractional area within a catchment and partitions water into surface runoff, infiltration, evapotranspiration (ET), and interflow, percolation, and baseflow components. Values from each fractional area (fa) within the catchment are then summed to represent the lumped hydrologic response for all land cover classes, with surface runoff, interflow, and baseflow being linked to a river element; deep percolation being linked to a groundwater element where prescribed; and ET being lost from the system.

The hydrologic response of each catchment is depicted by a "two-bucket" water balance model as shown in Figure A-SW8. The model tracks soil water storage, in the upper bucket, z_{fa}, and in the lower bucket, Z. Effective precipitation, P_e, and applied water, AW, are partitioned into evapotranspiration (ET), surface runoff/return flow, interflow, percolation and baseflow.

Effective precipitation is the combination of direct precipitation (P_{obs}) and snowmelt (which is controlled by the temperatures at which snow freezes, T_s , and melts, T_l). Soil water storage in the shallow soil profile (or upper bucket) is tracked within each fractional area, fa, and is influenced by the following parameters: a plant/crop coefficient (kc_{fa}); a conceptual runoff resistance factor (RRF_{fa}); water holding capacity (WC_{fa}); hydraulic conductivity (HC_{fa}); upper and lower soil water irrigation thresholds (Ufa and L_{fa}); and a partitioning fraction, f, which determines whether water moves horizontally or vertically. Percolation from each of these fractional areas contributes to soil water storage (Z) in the deep soil zone (or lower bucket) and is influenced by the following parameters: water holding capacity (WC_{fa}), hydraulic conductivity (HC_{fa}), and the partitioning fraction, f.

WEAP Water Allocation and Hydrology describe the basic functions of the WEAP model. The following sections describe the data used and how the Statewide HR Model was refined to the Planning Area.

Model Data

The following model data was used in the WEAP model:

- Monthly Precipitation and Temperature Data from the <u>PRISM Climate Group</u> Dataset.
- Relative Humidity and Wind Speed from the Maurer's Dataset, consistent with the CA Water Plan.
- National Land Cover Database (2011) to define the land use types.
- United States Geological Services (USGS) Gage Data.
- Existing Reservoirs.

The NLCD land use types were re-classified to correspond with the CVPA WEAP Model as shown in Table A-SW6.

		CV PA WEAP Model Land	
NLCD Land Use Type		Use Types	Description
Developed			
			Areas with a mixture of some constructed materials, but mostly
			vegetation in the form of lawn grasses. Impervious surfaces
21	Developed, Open	Developed Open Space	account for less than 20% of total cover. These areas most
21	Space	Developed Open Space	commonly include large-lot single-family housing units, parks, golf
			courses, and vegetation planted in developed settings for
			recreation, erosion control, or aesthetic purposes.
			Area with a mixture of constructed materials and vegetation.
22	Developed, Low	Urban Low Intensity	Impervious surfaces account for 20% to 49% percent of total
22	Intensity		cover. These areas most commonly include single-family housing
			units.
	Developed Medium		Areas with a mixture of constructed materials and vegetation.
23	Developed, Medium	Urban Medium Intensity	Impervious surfaces account for 50% to 79% of the total cover.
	Intensity		These areas most commonly include single-family housing units.
			Highly developed areas where people reside or work in high
24	Developed High		numbers. Examples include apartment complexes, row houses
24	Intensity	Urban High Intensity	and commercial/industrial. Impervious surfaces account for 80%
			to 100% of the total cover.
Barren			
			Area of bedrock, desert pavement, scarps, talus, slides, volcanic
31	Barren Land	Barren	material, glacial debris, sand dunes, strip mines, gravel pits and
51	(Rock/Sand/Clay)		other accumulations of earthen material. Generally, vegetation
			accounts for less than 15% of total cover.

Table A-SW6. Reclassified NLCD Land Use Types to CVPA WEAP Model Land Use Types

Forost			
<u>Forest</u> 41	Deciduous Forest	Forested	Areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species shed foliage simultaneously in response to seasonal change.
42	Evergreen Forest	Forested	Areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species maintain their leaves all year. Canopy is never without green foliage.
43	Mixed Forest	Forested	Areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover.
Shrubland			
51	Dwarf Scrub	Non Forested	Alaska only areas dominated by shrubs less than 20 centimeters tall with shrub canopy typically greater than 20% of total vegetation. This type is often co-associated with grasses, sedges, herbs, and non-vascular vegetation.
52	Shrub/Scrub	Non Forested	Areas dominated by shrubs; less than 5 meters tall with shrub canopy typically greater than 20% of total vegetation. This class includes true shrubs, young trees in an early successional stage, or trees stunted from environmental conditions.
Herbaceous			
71	Grassland/Herbaceous	Non Forested	Areas dominated by gramanoid or herbaceous vegetation, generally greater than 80% of total vegetation. These areas are not subject to intensive management such as tilling, but can be utilized for grazing.

72	Sedge/Herbaceous	Non Forested	Alaska only areas dominated by sedges and forbs, generally greater than 80% of total vegetation. This type can occur with significant other grasses or other grass like plants, and includes sedge tundra, and sedge tussock tundra.
73	Lichens	Non Forested	Alaska only areas dominated by fruticose or foliose lichens generally greater than 80% of total vegetation.
74	Moss	Non Forested	Alaska only areas dominated by mosses, generally greater than 80% of total vegetation.
Planted/Cultivated			
81	Pasture/Hay	Agricultural Land	Areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops, typically on a perennial cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation.
82	Cultivated Crops	Agricultural Land	Areas used for the production of annual crops, such as corn, soybeans, vegetables, tobacco, and cotton, and also perennial woody crops such as orchards and vineyards. Crop vegetation accounts for greater than 20% of total vegetation. This class also includes all land being actively tilled.
<u>Wetlands</u>			
90	Woody Wetlands	Non Forested	Area where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or substrate is periodically saturated with or covered with water.
95	Emergent Herbaceous Wetlands	Non Forested	Areas where perennial herbaceous vegetation accounts for greater than 80% of vegetative cover and the soil or substrate is periodically saturated with or covered with water.

Streams/Rivers and Delineation of Watershed

Streams/rivers were represented in the WEAP model using a River node. Watersheds were represented in the WEAP model using a Catchment node. Watersheds were delineated to represent the runoff into the stream. For delineation of watersheds, the USGS Hydrologic Unit (HUC) 8, 10, and 12 were used, herein referred to as USGS HUC. Watersheds were strategically delineated to represent how water flows in the region. Reservoirs were considered when delineating watersheds. When determining reservoir inflow, it was ensured that only the contributing area to the reservoir was included when delineating the watershed. Watershed delineation was separated into two distinct watersheds: (1) calibrated watersheds and (2) adjacent and downstream watersheds.

For calibrated watersheds, the USGS HUC was used in conjunction with the PRISM data to calculate the average monthly precipitation, monthly temperature, and land use type. In cases where the USGS HUC area was larger than the contributing gage area, the contributing watershed gage area was used; it was assumed that the USGS contributing watershed gage area is proportionally represented by the same land use types as the USGS HUC. Once the watershed was calibrated with observed streamflow, the properties of the calibrated USGS gage area were applied to adjacent and downstream watersheds.

For adjacent and downstream watersheds, the USGS HUC was also used. Multiple USGS HUC watersheds were combined using engineering judgment, and WEAP catchment parameters were identified using similar watershed properties as the upstream or adjacent calibrated watersheds. The combined USGS HUC was used to get the average precipitation, temperature and NLCD land use types, similar to the methodology that was used for the calibrated watersheds. The area for two land use types, Developed, Open Space and Cultivated Crops, were excluded from adjacent and downstream watersheds because demands associated with these land use types were included in the Urban Outdoor Demand and Agricultural Demand, respectively. Both these demands will be discussed in greater detail in the following sections.

Reservoir Representation

Existing reservoirs were included in the WEAP models. Reservoir characteristics were based off available information from federal, State, or local data.

Imports

Various Hydrologic Regions receive water from other regions. Imports for the SWP and CVP were determined from the CalSim II model from the State Water Project Delivery Capability Report 2015 for the years 1967–2003. DWR Bulletin 132 Historical SWP deliveries were used for the years 2003–2012. The California Water Plan Update 2013 Water Balances were used to determine what portion of the total water contractor deliveries go to each Planning Area. Other federal, State, or local data was used to determine other imports (i.e., Colorado River).

Demands

Three demands were considered in the WEAP model: (1) Urban Indoor, (2) Urban Outdoor and (3) Agricultural. These demands are described in greater detail in the following sections.

Urban Demand

Urban Indoor and Outdoor Demand is represented in the same manner as the Statewide HR model.

Urban Indoor Demand

The Urban Indoor Demand was divided into the following categories:

- Single-family (SF) households.
- Multifamily (MF) households.
- Commercial employees.
- Industrial employees.

The annual activity level and annual water Use Rate is fixed and based on the Year 2010 for each Planning Area. It was assumed that 25% of all Urban Indoor demand is consumed and 75% is returned back to the system as return flow.

Urban Outdoor Demand

Urban Outdoor demand is estimated using the WEAP hydrology module, and is a function of irrigated landscape area (assumed to be turf), water-use rate factors, parameters defining soil and landscape characteristics, and climate. DWR estimated the irrigated landscape area independently for four urban land use classes: (1) SF households, (2) MF households, (3) commercial, and (4) large landscape. The area for each land use class is based on the Year 2001 and defined for each Planning Area.

Agricultural Demand

Agricultural Demand is also represented in the same manner as the Statewide HR model. Irrigated agricultural demand is estimated using the WEAP hydrology module and is a function of the irrigated area of 20 different crop types, parameters defining soil and land cover characteristics. The 20 crop types are shown in Table A-SW7. The area for each crop type is based on the Year 2010 for each PA.

No.	Crop Category		
1	Grain		
2	Rice		
3	Cotton		
4	Sugar Beet		
5	Corn		
6	Dry Bean		
7	Safflower		
8	Other Field		
9	Alfalfa		
10	Pasture		
11	Processed Tomato		
12	Fresh Tomato		
13	Cucurbits		
14	Onion and Garlic		
15	Potato		
16	Other Truck		
17	Almond and Pistachio		
18	Other Deciduous		
19	Sub-Tropical		
20	Vine		

Table A-SW7. Crop Types

Connecting Supplies and Demands

The demands (Urban Indoor, Urban Outdoor and Ag) are connected at the most downstream location of the stream. The demand with the highest priority (closer to 1) will be met first. The supply with the highest preference (closer to 1) will be used first to meet the demand. The demand priorities and supply preferences are shown in Table A-SW8 and Table A-SW9, respectively.

Demand	Priority	
Urban Indoor	1	
Urban Outdoor	2	
Agricultural	2	

Table A-SW8. WEAP De	mand Priorities
----------------------	-----------------

Table A-SW9. WEAP Supply Preferences

Water Source	Preference
SWP/CVP Imports	1
River/Stream Runoff	2

Return flow from the Urban Indoor Demand and runoff from the Urban Outdoor and Agricultural Demand is equally proportioned to the streams within the Planning Area. Further refinement is needed to better quantify how much each stream contributes to meeting the Planning Area demands.

Computation Time and Time Step

The WEAP Model and its inputs were run on a monthly time step from 1967–2012.

WEAP Outflow

Outflow from the WEAP model is determined by summing up the remaining water for each stream after the demands have been removed. In the simplest form (assuming no reservoirs, imports, etc.), the outflow is determined as shown in Figure A-SW9.

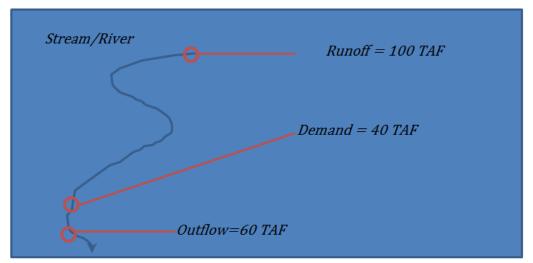


Figure A-SW9. WEAP Outflow Concept

Calibration

The calibration process includes setting soil parameters for defined catchments so that WEAP can accurately simulate rainfall-runoff using input climate data. Calibration was done at the most upstream gage on the stream to ensure that the flow was mostly unimpaired (no effect of reservoir, diversion, etc.). If the most upstream gage was immediately downstream of a reservoir, the inflow into the reservoir was calculated by using the following formula: Inflow = Change in Storage + Outflow.

It was important to spatially represent each Planning Area with calibrated watersheds to ensure calibrated watersheds were within close proximity of adjacent and downstream watersheds because similar watershed properties were used for adjacent and downstream watersheds.

Calibration Procedures

The following steps were used to calibrate the simulated streamflow to the observed streamflow at the most upstream gage:

- 1. Retrieve monthly streamflow at upstream gage location from USGS/CDEC
- 2. Determine total contributing watershed area to gage per USGS
- 3. Determine land use types in contributing watershed area per NLCD
- 4. Use Central Valley Planning Area WEAP Model as starting point for soil parameters for each land use type. Values are shown in Table A-SW11.

	Soil Water Capacity (inches)	Hydraulic Conductivity (inches/month)	Runoff Resistance Factor	Irrigated
Urban			a lover of second s	(a. 3)
Low-Intensity	4	8	1.0	No
Medium-Intensity	4	8	1.0	No
High-Intensity	4	8	1.0	No
Commercial Landscape	14	6	5.0	Yes
Residential Landscape	14	6	5.0	Yes
Natural Vegetation				
Forested	28	6	4.0 to 7.0	No
Non-Forested	18	8	5.0	No
Barren	10	10	3.5	No
Agriculture				
Pasture	20	5	6.0	Yes
Cultivated	26	8	4.0	Yes
Cultivated	20	0	4.0	

Figure A-SW11. Central Valley PA Model Land Cover Classifications and Final Parameters

5. Modify soil parameters within reasonable range to match simulated streamflow to observed streamflow and ensure Nash Sutcliffe Coefficient of Efficiency (NSE) is 0.6 or above and Percent Bias (PBIAs) is within -15 to 15 percent. NSE is commonly used in hydrologic modeling to evaluate how well modeled stream flow matches observed. The NSE indicates how well a plot of observed versus simulated data fits to a 1:1 line. NSE ranges from -∞ to 1.0. If NSE=1, there is a perfect match between the observed and modeled, if NSE=0, the modeled is only as good as the observed mean of the data, and NSE <0 indicates the model performs worse than the mean. Generally in hydrologic modeling, NSE > 0.6 is desired, while NSE > 0.8 is good. PBIAS as a measure of the model's ability to match the total volume of flow or the cumulative flow volume error relative to observed volume, usually referred to as water balance error (%WBL) in hydrologic modeling literature. In general, lower values of PBIAS indicate better model performance.

Potential Water Development by Other Methods (recycled water, desalination and water conservation)

Potential water development by other methods (recycle, desalination, and water conservation) is provided at the Hydrologic Region. The data source for the information and the methodology for the estimates are provided in the following sections.

Urban Water Portfolio Actions

GSAs can and should consider water available from other methods such as recycle, desalination, and water conservation when developing WAFR. Estimates of potential water development by other methods are presented in this section and are called urban water portfolio actions estimates. The estimates are based from the California Water Plan Update 2013 (Update 2013), Urban Water Management Plan 2010 (UWMP 2010) and 2015 (UWMP 2015) and other mandates from the State. These estimates are provided to indicate the scale of planned water development by urban retailers for each region during this decade.

Water Conservation

Three sources of data were used to estimate potential water development from water conservation:

- 1. California Water Plan Update 2013
- 2. Urban Water Management Plan 2010
- 3. Urban Water Management Plan 2015 (Accessed: Dec. 12th, 2016)

The urban water management plans (UWMPs) are prepared by California's urban water suppliers to support their long-term resource planning, and ensure adequate water supplies are available to meet existing and future water demands.

Every urban water supplier that either provides over 3,000 acre-feet of water annually, or serves more than 3,000 urban connections is required to assess the reliability of its water sources over a 20-year planning horizon, and report its progress on 20% reduction in per-capita urban water consumption by the year 2020, as required in the <u>Water Conservation Bill of 2009 SBX7-7</u>.

The water conservation estimates were calculated by taking the difference of the 2020 targeted water usage and the 2010 usage reported in the UWMPs.

The 2010 water conservation quantity for each hydrologic region were calculated by using the 2010 population from the CWP 2013 and the water use in gallons per capita per day (GPCD) from the UWMP 2010. The results are calculated in annual million acre-feet (maf) and are presented in Table A-OM1.

Table A-OM1. 2010 CWP Population and Water Usage **Hydrologic Region** 2010 Population 2010 Water Usage (GPCD) 2010 Water Usage (UWMP 2010) (CWP 2013) (maf*) North Coast 671,344 149 0.11 San Francisco Bay 6,345,194 154 1.09 Central Coast 1,528,708 145 0.25 South Coast 187 4.10 19,579,208 Sacramento River 272 0.91 2,983,156 San Joaquin River 236 2,104,206 0.56 0.72 Tulare Lake 2,267,335 283 North Lahontan 96,910 265 0.03 South Lahontan 930,786 256 0.27 Colorado River 747,109 399 0.33

Water Available for Replenishment Information and Estimates

*maf = million acre-feet

The 2020 targeted water conservation quantity for each hydrologic regions were calculated by using the 2020 current trend population from CWP 2013 and 2020 confirmed target of water use in GPCD from the UWMP 2015 (retrieved: Dec 12th, 2016, and still being updated) were used to estimate the water conservation by hydrologic regions by 2020. The results were calculated in maf and are presented in Table A-OM2.

Hydrologic Region	2010 Population (CWP 2013)	2010 Water Usage (GPCD) (UWMP 2015, results retrieved on Dec 12th, 2016 and still updated)	2020 Annual Water Usage (maf*)
North Coast	671,344	134	0.11
San Francisco Bay	6,345,194	143	1.08
Central Coast	1,528,708	133	0.24
South Coast	19,579,208	163	3.86
Sacramento River	2,983,156	210	0.78
San Joaquin River	2,104,206	166	0.45
Tulare Lake	2,267,335	221	0.67
North Lahontan	96,910	236	0.03
South Lahontan	930,786	204	0.25
Colorado River	747,109	323	0.34

Table A-OM2. 2010 CWP Population and Water Usage and 2020 Water Usage

*maf-million acre-feet

The difference between the 2010 and 2020 annual water usage provides the potential water conservation development estimates and can be found on Table A-OM3.

Hydrologic Region	2010 Annual Water Usage (maf*)	2020 Annual Water Usage (maf*)	Estimates of Water Conservation Increase from 2010 to 2020
			(maf*)
North Coast	0.11	0.10	0.01
San Francisco Bay	1.09	1.07	0.02
Central Coast	0.25	0.24	0.01
South Coast	4.10	3.86	0.24
Sacramento River	0.91	0.78	0.13
San Joaquin River	0.56	0.45	0.11
Tulare Lake	0.72	0.67	0.05
North Lahontan	0.03	0.03	0.00
South Lahontan	0.27	0.26	0.01
Colorado River	0.33	0.33	0.00
Total	8.37	7.79	0.58

Table A-OM3. 2010 and 2020 Annual Water Usages and Estimates of Water Conservation

*maf = million acre-feet

Recycled Water

Two sources of data were used to estimate potential water development from recycled water:

- 1. <u>2009 Municipal Wastewater Recycling Survey Results</u>. Reported to State Water Board on November 1, 2011.
- 2. <u>Urban Water Management Plan 2010</u> reported in the Water Plan Update 2013.

The 2009 Municipal Wastewater Recycling Survey Results were collected by the SWRCB during the period of January, 2009, to December 31, 2009. This statewide survey was assumed to be very similar to the 2010 level of recycle for the determination of the estimates.

From the survey, the SWRCB established a mandate to increase the use of recycled water in California by 200 thousand acre-feet (taf) by 2020 and by an additional 300 taf by 2030. The 200 taf of increase in recycled water by 2020 was distributed by hydrologic region using the 2009 municipal wastewater recycling results and DWR's goal for 2020 as reported in the California Water Plan 2013. Table A-OM4 presents this information and distribution of the statewide 200 TAF.

Hydrologic Region	2009 Municipal Wastewater Recycling Survey Results (taf*)	2020 DWR Target (taf*)	Distribution of the SWRCB 2020 Statewide mandate to Hydrologic Regions (taf*)	Estimates of Recycled Water Increase from 2010 to 2020 (taf*)
North Coast	25.8	36.0	32.1	6.3
San Francisco Bay	48.4	86.0	71.5	23.1
Central Coast	23.5	30.0	27.5	4.0
South Coast	353.9	519.0	455.5	101.6
Sacramento River	12.4	40.0	29.4	17.0
San Joaquin River	29.3	70.0	54.3	25.0
Tulare Lake	130.2	149.0	141.8	11.6
North Lahontan	4.9	6.0	5.6	0.7
South Lahontan	26.5	35.0	31.7	5.2
Colorado River	14.1	23.0	19.6	5.5
Total	669.0	994.0	869.0	200.0

Table A-OM4. Summary of Recycled Water

*taf = thousand acre-feet

Desalination

One source of data was used to estimate potential water development from desalination:

1. California Water Plan Update 2013

The CWP Update 2013 provides a table which summarizes desalination projects in three categories: "In operation," "in design and construction," and "proposed."

General Source Water Designation	In Operation		In Design and Construction		Proposed		
	NO. OF PLANTS	2010 PRODUCTION	ANNUAL CAPACITY	NO. OF PLANTS	ANNUAL CAPACITY	NO. OF PLANTS	ANNUAL CAPACITY
Brackish groundwater	23	79,812	139,627	3	9,050	17	74,629
Brackish surface water	0	0	0	0	0	1	22,403
Ocean water	3	130	562	1	56,007	15	381,791
Total	26	79,942	140,189	4	65,057	33	478,823
Cumulative				30	205,246	63	684,069

Figure A-OM1. CWP Update 2013 Summary of California Desalting

The desalination estimates for this report are calculated by examining the desalination projects put in operations between 2010 and 2020. The table above from the CA Water Plan was inspected specifically under the "in design and construction" and "proposed" categories.

Table A-OM5 shows the estimates of desalination increase from 2010 to 2020 in TAF by hydrologic region.

Hydrologic Region	Estimates of Desalination Water Increase from 2010 to 2020 (TAF)
Central Coast	24.2
South Coast	313.7
Total	337.8

Table A-OM5. 2010 to 2020 Estimates of Desalination Increase by Hydrologic Region

North Coast Hydrologic Region

The North Coast Hydrologic Region (HR) covers a total of 19,390 square miles, spanning from the Oregon border in the north and to the northern end of Marin County in the south. This is the wettest HR in the state with an average precipitation of 50 inches, primarily falling as rain, with snow in the high Klamath Mountains and Cascades. The bulk of water leaving the HR goes to the ocean, with some water exported into the Sacramento River HR by way of the Clear Creek Tunnel out of Lewiston Reservoir, and some exported to the San Francisco HR by the Petaluma Aqueduct. The region is sparsely populated; major population centers include Eureka, Santa Rosa, and Ukiah. The North Coast HR has the largest environmental flow requirements of any hydrologic region, with the three largest rivers being designated Wild and Scenic for most of their length (California Water Plan 2013).

The North Coast is divided into four Planning Areas: Planning Area 101 (PA 101) Planning Area 102 (PA 102), Planning Area 103 (PA 103), and Planning Area 104 (PA 104) which are shown in Figure A-NC1.

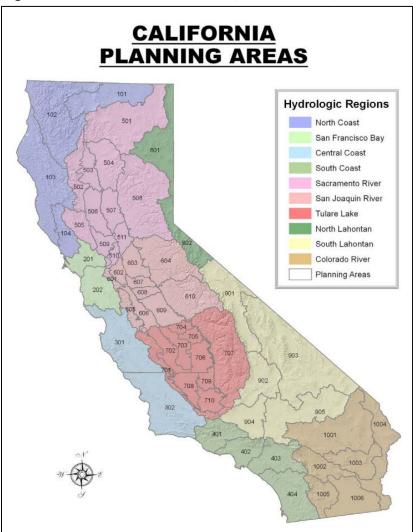
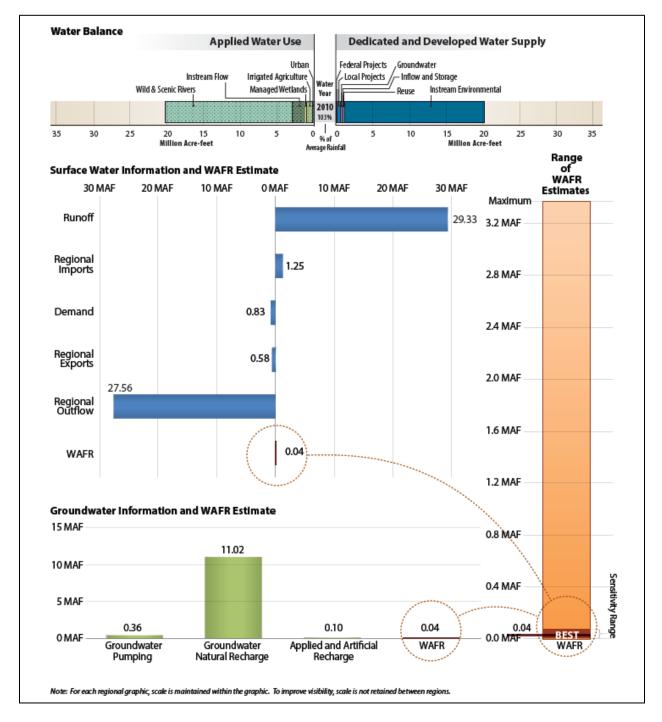



Figure A-NC1. North Coast HR- PA 101, PA 102, PA 103, and PA 104

Summary of WAFR Information and Estimates

WAFR information and estimates for North Coast Hydrologic Region, Planning Area 101, Planning Area 102, Planning Area 103, and Planning Area 104 are shown in Figures A-NC2 and A-NC3.

*Regional imports are flows from contributing watersheds in Oregon which flow into California.

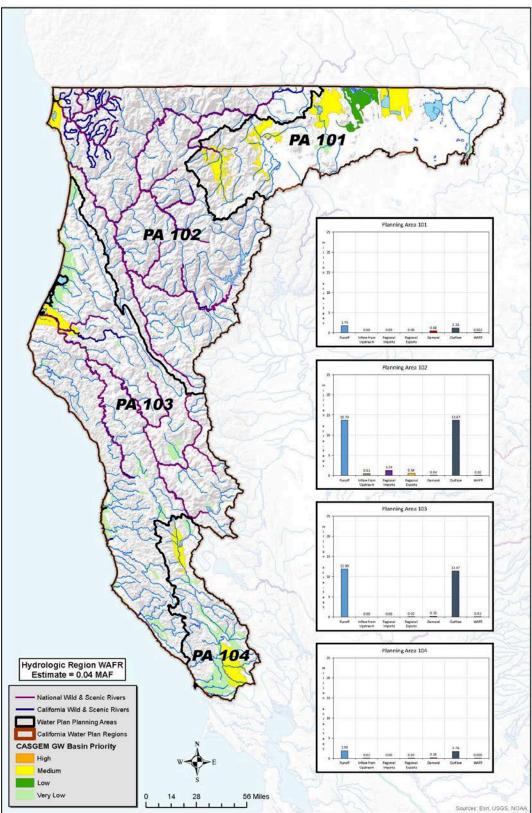


Figure A-NC3. North Coast PA 101, 102, 103, and 104 WAFR Information and Estimates

WAFR Information and Estimates

The major rivers and streams in the North Coast are the Big River, Eel River, Gualala River, Klamath River, Little River, Lost River, Mad River, Mattole River, Navarro River, Noyo River, Russian River, Shasta River, Smith River, Ten Mile River, and Trinity River. North Coast exports water to both the Central Valley Project (CVP) and San Francisco Hydrologic Region. Actual volume of water delivered varies annually (California Water Plan Update 2013).

The WAFR information and estimates are provided in the following sections.

Surface Water and Groundwater Information

North Coast, PA 101, PA 102, PA 103, and PA 104 surface water and groundwater information is (as defined in the Surface Water and Groundwater Information section) provided in Table A-NC1.

Table A-NC1. North Coast, PA 101, PA 102, PA 103, and PA 104Surface Water and Groundwater Information

Geographical Region	Regional Imports (maf)	Regional Exports (maf)	Groundwater Pumping (maf)	Groundwater Natural Recharge (maf)	Applied and Artificial Recharge (maf)
North Coast HR	1.25*	0.58	0.36	11.02	0.10
PA 101			-	-	-
PA 102	1.25*	0.54			
PA 103		0.02			
PA 104		0.02	-	-	-

maf – million acre-feet

*Regional imports are flows from contributing watersheds in Oregon which flow into California.

WAFR Estimates


The following sections describe how the WAFR estimates were determined.

WEAP Model

The North Coast WEAP Model was developed using the procedures described in the <u>WEAP Model</u> <u>Methodology section</u> and described in more detail in the following sections.

Model Domain

The North Coast WEAP Model domain is shown in Figure A-NC4.

Figure A-NC4. North Coast WEAP Model

Streams/Rivers and Delineation of Watershed

The North Coast WEAP Model streams/rivers with corresponding Planning Area are shown in Table A-NC2.

River/Stream (PA 101) River/Stream (PA 102)				
Butte Creek	Beaver Creek	Mingo Creek		
Butte Creek_2	Big French Creek	New River		
Little Shasta River	Blue Creek	N.F. Trinity River		
Lost River	Bluff Creek	Palmer Creek		
Scott River	Browns Creek	Red Cap Creek		
Shasta River	Canyon Creek	Rock Creek		
	Clear Creek	Rush Creek		
	Coffee Creek	Salmon River		
	Cottonwood Creek	Scott River		
	Crescent City*	Smith River		
	Dutton Creek	Stuart Fork		
	E.F. Trinity River	Swift Creek		
	Elk Creek	Thompson Creek		
	Fall Creek	Trinity River		
	Grass Valley Creek	S.F. Trinity River		
	Hayfork Creek	Ukonom Creek		
	Horse Linto Creek	Willow Creek		
	Indian Creek	Winchuk River		
	Indian Creek @ Douglas City	Clear Creek Tunnel**		
	Klamath River			
	Stream (PA 103)	River/Stream (PA 104)		
Albion River	Middle Fork Eel River	Austin Creek		
Bear River	North Fork Eel River	Big Sulphur Creek		
Big River	Navarro River	Bodega Bay*		
Coastal Mattole*	Noyo River	Dry Creek		
Dobbyn Creek	Outlet Creek	East Fork Russian River		
Eel River	South Fork Eel River	Laguna de Santa Rosa		
Eureka*	Redwood Creek	Feliz Creek		
Fort Bragg*	Rockpile Creek	Maacama Creek		
Garcia River	Salt Point*	Mark West Creek		
Gualala Wheatfield*	Ten Mile River	Russian River		
House Creek	Tomki Creek	PVID Tunnel**		
Larahaa Craak	Tripidad	Sonoma-Petaluma		
Larabee Creek	Trinidad	Aqueduct**		
Little River	Lower Mattole River*			
Gualala River	Van Duzen River			
Mad River	Westport*			
Manchester*	Yager Creek			
Mattole River	PVID Tunnel**			

Table A-NC2. North Coast Streams/Rivers

* - Representation of smaller streams/creeks within nearby area

** - Diversion Tunnels

Watersheds in North Coast were delineated to determine the runoff from each stream using the procedures described in the <u>WEAP Model section</u>.

Reservoir

Reservoirs included in the North Coast HR WEAP model with the corresponding Planning Areas are:

- Clear Lake (Lost River , PA 101)
- Lake Shastina (Shasta River, PA 101).
- Copco Lake (Klamath River, PA 102)
- Iron Gate Reservoir (Klamath River, PA102)
- Lewiston Lake (Trinity River, PA 102).
- Trinity Lake (Trinity River, PA 102).
- Lake Pillsbury (Eel River, PA 103).
- Lake Van Arsdale (Eel River, PA 103).
- Ruth Reservoir (Mad River, PA 103).
- Lake Mendocino (East Fork Russian River, PA 104).
- Lake Sonoma (Dry Creek, PA 104).

Demands

The North Coast demands were determined using the procedures described in the <u>WEAP Model</u> <u>Methodology section</u> and described in the following sections.

Urban Indoor Demand

The Urban Indoor Annual Activity Level and Annual Water Use Rate for each Planning Area are shown in Table A-NC3.

Table A-NC3. Annual Activity Level and Annual Water Use Rate by Category

Category	Annual Activity Level (person/household)	Annual Water Use Rate (taf per person/household)	Annual Activity Level (person/household)	Annual Water Use Rate (taf per person/household)
	P/	A 101	P/	A 102
Commercial	23,088	0.000033	42,623	0.000033
Industrial	906	0.000886	1,309	0.000886
Multi-Family	4,400	0.000168	6,519	0.000168
Single-Family	12,229	0.000201	18,118	0.000201
	PA 103		P/	A 104
Commercial	88,799	0.000033	165,166	0.000033
Industrial	22,158	0.000886	604	0.000886
Multi-Family	24,446	0.000168	34,550	0.000168
Single-Family	67,941	0.000201	96,024	0.000201

taf= thousand acre-feet

Urban Outdoor Demand

The acres for each land use class by Planning Area are shown in Table A-NC4.

	PA 101	PA 102	PA103	PA104	
Land Use Class	(thousand Acres)	(thousand Acres)	(thousand Acres)	(thousand Acres)	
Commercial	0.0684	0.1579	0.2398	0.5233	
Multi-Family	0.0861	0.079	0.2301	0.6007	
Public	0.1504	0.0909	0.2	0.5752	
Single-Family	0.0861	0.079	0.2301	0.6007	
Total	0.4594	0.5647	1.1398	2.8232	

Table A-NC4. Urban Outdoor Land Use Class Acres

Agricultural Demand

The acres for each crop type by Planning Area are shown in Table A-NC5.

			· •	
	PA 101	PA 102	PA 103	PA 104
	(thousand	(thousand	(thousand	(thousand
Сгор	Acres)	Acres)	Acres)	Acres)
Grain	58.293	1.534	1.437	0.548
Pasture	78.48	11.26	43.592	8.671
Processed Tomato	0	0	0	0
Fresh Tomato	0	0	0	0
Cucurbits	0.003	0	0.032	0.015
Onion and Garlic	2.262	0	0	0
Potato	6.94	0	0.164	0
Other Truck	6.607	0.725	0.615	0.873
Almond and Pistachio	0	0	0.013	0
Other Deciduous	0.058	0.13	0.406	5.024
Sub-Tropical	0	0	0.023	0.456
Rice	0.028	0	0	0
Vine	0.002	0.171	3.622	58.507
Cotton	0	0	0	0
Sugar Beet	0	0	0	0
Corn	0	0	0.136	0.136
Dry Bean	0	0	0.004	0
Safflower	0	0	0	0
Other Field	0.568	0.063	0.386	1.98
Alfalfa	62.997	0.327	0.2	0
Total	216.238	14.21	50.63	76.21

Table A-NC5. Crop acres by Crop Type

Calibration

The North Coast WEAP Model was calibrated using the procedures described in the <u>WEAP Model</u> <u>Methodology section</u>.

Calibration Data Collection

Calibrated Watersheds with corresponding gage information are shown in Table A-NC6.

Table A-NC6. Calibrated Gage Locations					
Gage Name	Site Number	Drainage Area (Square Miles)	Gage Flow Starting Date	Gage Flow Ending Date	
AUSTIN C NR CAZADERO CA	11467200	62.8	2/8/1960	2/8/2014	
BEAVER C NR KLAMATH R CA	11517800	106	3/9/1954	12/22/1964	
BIG R BLW TWO LOG CR NR COMPTCHE CA	11468092	88.7	12/6/2001	12/27/2006	
BIG SULPHUR C NR CLOVERDALE CA	11463200	85.5	12/22/1955	1/23/1972	
BLUE C NR KLAMATH CA	11530300	120	12/22/1964	12/14/1977	
BLUFF C NR WEITCHPEC CA	11523050	74.6	12/22/1955	12/22/1964	
BROWNS C NR DOUGLAS CITY CA	11525900	72.7	2/24/1957	12/4/1966	
BUTTE C NR MACDOEL CA	11490500	178	6/7/1952	5/14/1960	
COFFEE C NR TRINITY CENTER CA	11523700	107	1955-12	5/4/1966	
COTTONWOOD C A HORNBROOK CA	11516600	89.8	12/22/1964	1/16/1971	
DRY C NR CLOVERDALE CA	11464500	87.8	1937-12	2/17/1980	
ELK C NR HAPPY CAMP CA	11522200	90.4	12/21/1955	1/20/1964	
FELIZ C NR HOPLAND CA	11462700	31.3	2/16/1959	1/4/1966	
GARCIA R NR POINT ARENA CA	11467600	98.5	12/26/1951	1/26/1983	
GRASS VALLEY C NR LEWISTON CA	11525630	36.2	12/27/2004	12/11/2014	
HAYFORK C NR HYAMPOM CA	11528500	378	1/17/1954	1/16/1974	
INDIAN C NR DOUGLAS CITY CA	11525670	33.5	12/27/2004	12/11/2014	
INDIAN C NR HAPPY CAMP CA	11521500	120	2/17/1912	2/14/2014	
LAGUNA DE SANTA ROSA C NR SEBASTOPOL CA	11465750	79.6	2/13/2000	2/10/2014	
LARABEE C NR HOLMES CA	11476700	84.1	2/8/1960	12/22/1964	
LITTLE R NR TRINIDAD CA	11481200	40.5	1/17/1953	3/10/2014	
MAACAMA C NR KELLOGG CA	11463900	43.7	1/31/1961	12/3/1980	
MAD R NR ARCATA CA	11481000	485	1/19/1911	3/10/2014	
MATTOLE R NR PETROLIA CA	11469000	245	1/25/1912	3/29/2014	
MF EEL R NR DOS RIOS CA	11473900	745	1/4/1966	3/29/2014	
MF TEN MILE R NR FORT BRAGG CA	11468600	32.9	12/21/1964	1/16/1974	
NAVARRO R NR NAVARRO CA	11468000	303	1937-12	3/29/2014	

Gage Name	Site Number	Drainage Area (Square Miles)	Gage Flow Starting Date	Gage Flow Ending Date
NEW R A DENNY CA	11527400	173	3/26/1928	1/21/1969
NF EEL R NR MINA CA	11474500	248	1/17/1954	12/8/2004
NF TRINITY R A HELENA CA	11526500	151	1/25/1912	1/14/1980
NOYO R NR FORT BRAGG CA	11468500	106	12/27/1951	3/29/2014
OUTLET C NR LONGVALE CA	11472200	161	2/24/1957	1/1/1997
RED CAP C NR ORLEANS CA	11523030	56.1	1/12/1959	12/22/1964
REDWOOD C A ORICK CA	11482500	277	2/17/1912	3/10/2014
RUSH C NR LEWISTON CA	11525530	22.3	2/17/2004	3/9/2014
RUSSIAN R NR UKIAH CA	11461000	100	3/15/1912	3/29/2014
SALMON R A SOMES BAR CA	11522500	751	2/17/1912	3/10/2014
SF EEL R NR MIRANDA CA	11476500	537	1/25/1941	3/29/2014
SF GUALALA R NR THE SEA RANCH CA	11467510	161	1/4/2008	2/8/2014
SF TRINITY R BL HYAMPOM CA	11528700	764	12/22/1964	3/29/2014
SHASTA R NR YREKA CA	11517500	793	1/3/1934	2/7/2015
SMITH R NR CRESCENT CITY CA	11532500	614	4/10/1905	2/14/2014
TRINITY R AB COFFEE C NR TRINITY CENTER CA	11523200	149	12/22/1955	3/5/2014
VAN DUZEN R NR BRIDGEVILLE CA	11478500	222	2/28/1940	3/29/2014
WILLOW C NR WILLOW C CA	11529800	40.9	2/9/1960	4/1/1974

Calibration Results

Calibrated Watersheds with corresponding NSE and PBIAS are shown in Table A-NC7.

Stream Gage Name and River Name	Nash Sutcliffe Coefficient of Efficiency (NSE)	Percent Bias (PBIAS)
Austin C @ Austin Creek	0.84	-7.37
Big Sulphur C @ Big Sulphur Cr	0.93	-10.37
Beaver Cr @ nr Klamath	0.64	2.09
Big R @ Two Log Cr	0.76	-11.00
Blue Cr @ Blue Cr	0.84	7.68
Bluff Cr @ Bluff Cr	0.82	-9.18
Browns Cr @ Browns Cr	0.84	-1.67
Coffee Cr @ 11523700	0.65	-11.35
Cottonwood Cr @ Hornbrook_11516600	0.88	-6.67
Dry C @ Cloverdale	0.96	-0.24
Feliz Creek @ Nr Hopland	0.88	-5.88
Garcia R @ Garcia R nr Pt Arena	0.84	-6.70
Grass Valley @ GV Cr_Lewiston	0.76	-2.16
Gualala River @ SF Gualala R	0.92	-5.77
Hayfork Cr @ Hayfork_11528500	0.80	1.84
Indian C @ Happy Camp	0.78	0.07
Laguna de SR @ Laguna de Santa Rosa	0.87	14.01
Larabee Cr @ Larabee Cr_1147670	0.80	-7.09
Little R @ Trinidad CA	0.91	-5.28
Maacama C @ nr Kellog	0.97	-2.91
MF Ten Mile R @ MF Ten Mile R	0.96	0.84
Mad River @ Arcata	0.94	-2.39
Mattole R @ nr Petrolia	0.86	-2.59
Middle Fork Eeel @ MF EEL NR DO	0.88	-8.38
N Fork Eeel @ Mina	0.89	-11.13
NF Trinity @ NF Trinity	0.76	-3.80

Table A-NC7. Calibrated Watersheds with corresponding NSE and PBIAS

Navarro R @ Navarro R	0.95	2.24
New River @ New R_11527400	0.62	9.06
Noyo R @ nr Fort Bragg	0.91	-11.83
Outlet Cr @ Outlet Cr	0.95	0.80
Red Cap Cr @ 1152303	0.83	8.64
Redwood Cr @ Orick	0.91	-0.33
Rush Cr @ Lewiston	-0.99	-100
Russian River @ nr Ukiah	0.96	-4.15
S Fork Eel River @ SF EEL R NR	0.95	-2.99
Salmon R @ Somes Bar	0.73	-9.26
Smith R @ nr_Crescent City	0.92	-11.19
Trinity @ Trinity	0.63	-7.71
Trinity River SF @ SF Trinity	0.87	8.71
Van Duzen R @ Van Duzen R Bridge	0.93	-10.91
Willow Cr @ Willow Cr_11529800	0.67	8.43

WEAP Outflow

The WEAP outflow for North Coast HR, PA 101, PA 102, PA 103, and PA 104 is shown in Table A-NC8.

Geographical Region	Outflow (maf)
North Coast HR	27.56*
PA 101	1.18
PA 102	13.67
PA 103	11.47
PA 104	1.76

Table A-NC8. North Coast, PA 101, PA 102, PA 103, and PA 104 WEAP Outflow

maf = million acre-feet

*Please note the sum of the Planning Area outflow does not equal the hydrologic region outflow; since major rivers flow through multiple Planning Areas, the outflow from an upstream Planning Area may be double counted in the outflow for a downstream Planning Area.

WAFR Fraction

The following sections describe how the WAFR Fraction was determined for North Coast, PA 101, PA 102, PA 103, and PA 104.

Gage Data

Gage data for 17 major rivers and streams in the North Coast HR was compiled. In each river or stream, the most downstream gage was selected to account for water demands within the watershed and to develop a WAFR fraction that is applicable to regional outflow.

The total area of the gaged watersheds is 19,131 square miles of the 19,390 square mile region, or approximately 98.7 percent of the hydrologic region. A summary of the stream gages used in this analysis is presented in Table A-NC9. A map showing the locations of the gages used, and their respective watersheds are shown as Figure A-NC5.

River/Stream	Location	USGS Gage Number	Area (square miles)
Big Sur	Big Sur	11143000	47
Carmel	Carmel	11143250	247
Pajaro	Watsonville	11159500	1,272
Salinas	Spreckels	11152500	4,156
San Antonio	Casmalia	11136100	135
San Jose	Goleta	11120500	6
San Lorenzo	Santa Cruz	11161000	115
Santa Maria	Guadalupe	11141000	1,741
Santa Ynez	Lompoc	11133000	789

River/Stream	Location	USGS Gage Number	Area (square miles)
Smith River	Crescent City	11532500	614
Klamath River	Klamath	11530500	12,100
Redwood Creek	Orick	11482500	277
Little River	Trinidad	11481200	41
Mad River	Arcata	11481000	485
Elk River	Falk	11479700	44
Eel River	Scotia	11477000	3,113
Mattole River	Petrolia	11469000	245
MF Ten Mile River	Fort Bragg	11468600	54
Noyo River	Fort Bragg	11468500	106
Big River	Comptche	11468092	89
Navarro River	Navarro	11468000	303
Garcia River	Point Arena	11467600	99
NF Gualala River	Gualala	11467553	47
SF Gualala River	The Sea Ranch	11467510	161
Russian River	Guerneville	11467000	1,338
Salmon Creek	Bodega	11460920	16
Austin Creek	Cazadero	11467200	63

Table A-NC9. Major Rivers and Gages in North Coast HR Analysis

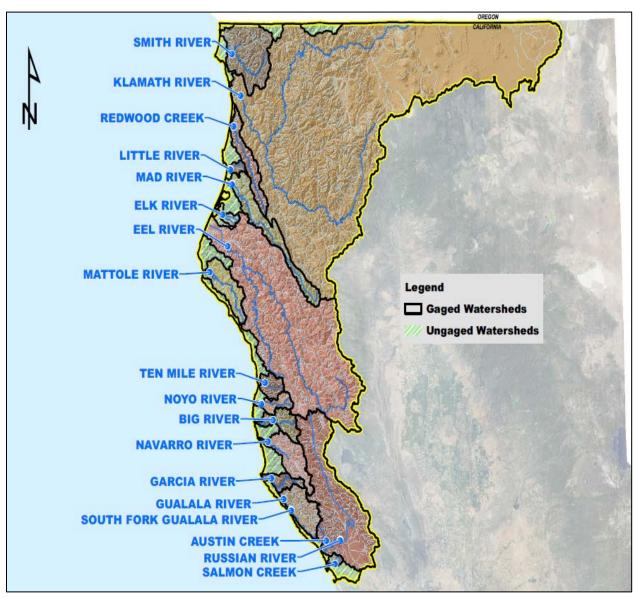
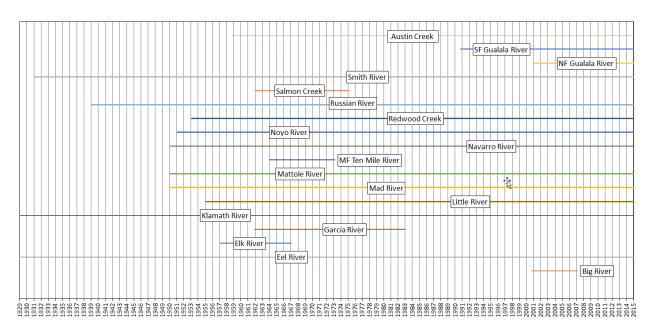



Figure A-NC5. Watersheds for Major Gaged Streams in North Coast

Once the available gage data was compiled, the periods of available data for the 17 gages were compared. Data availability by year is presented in Figure A-NC6.

Figure A-NC6. Period of Available Gage Data

The Wild and Scenic Rivers Act (Public Law 90-542) prohibits any new diversion from a river or stream designated as Wild, Scenic, or Recreational. Therefore, to develop a WAFR fraction for North Coast Rivers, any river holding one of these designations was removed from the analysis.

The California State Water Resources Control Board (SWRCB) also keeps an inventory of Fully Appropriated Streams (Board Order 98-08). The SWRCB has determined that the amount of water in a Fully Appropriated Stream is able to meet only the requirements of existing water right holders, and new water right permits are unlikely. Unlike Wild and Scenic Rivers, a stream can be designated Fully Appropriated for only a portion of the year; therefore, rivers and streams that are designated Fully Appropriated for only a portion of the year were included in this analysis.

A table of Fully Appropriated Streams and Wild and Scenic Rivers on the North Coast is shown in Table A-NC10.

River	Designation	Time Period	Considered in Analysis?
Smith River	Wild and Scenic	Year Round	No
Klamath River	Wild and Scenic	Year Round	No
Mad River	Fully Appropriated	Jun-Oct	Yes
Eel River	Wild and Scenic	Year Round	No

The gage data outflow, diverted water using a Conceptual Project (WAFR), and WAFR Fraction (diverted water using Conceptual Project (WAFR)/Gage Data Outflow) for each stream and the North Coast Hydrologic Region is shown in Table A-NC11.

River/	Gage Data		wer Sensitivity ange Estimate Best Estimate		Upper Sensitivity Range Estimate		Maximum Project Estimate		
Stream	Outflow (taf)*	WAFR (taf)	WAFR Fraction (%)	WAFR (taf)	WAFR Fraction (%)	WAFR (taf)	WAFR Fraction (%)	WAFR (taf)	WAFR Fraction (%)
Smith River	2,674	-	0%	-	0%	-	0%	-	0%
Klamath River	12,241	-	0%	-	0%	-	0%	-	0%
Redwood Creek	696	0.02	0%	0.06	0.01%	0.12	0.02%	458.45	65.89%
Little River	96	-	0%	-	0%	-	0%	-	0%
Mad River	953	-	0%	-	0%	-	0%	-	0%
Elk River	68	0.01	0.01%	0.04	0.05%	0.07	0.11%	40.89	60.47%
Eel River	5,536	-	0%	-	0%	-	0%	-	0%
Mattole River	886	0.06	0.01%	0.19	0.02%	0.38	0.04%	601.46	67.90%
Mf Ten Mile River	62	-	0%	-	0%	-	0%	-	0%
Noyo River	144	0.62	0.43%	1.50	1.04%	2.89	2.01%	137.50	95.58%
Big River	166	-	0%	-	0%	-	0%	101.53	61.06%
Navarro River	352	0.97	0.28%	2.36	0.67%	4.62	1.31%	335.50	95.27%
Garcia River	253	0.06	0.03%	0.22	0.09%	0.43	0.17%	168.54	66.60%
Nf Gualala River	81	0.03	0.04%	0.10	0.12%	0.19	0.24%	11.92	14.72%
Sf Gualala River	75	0.08	0.11%	0.22	0.30%	0.45	0.60%	63.48	84.70%
Russian River	1,591	10.39	0.65%	30.85	1.94%	59.76	3.76%	1144.32	71.91%
Salmon Creek	19	0.07	0.38%	0.15	0.77%	0.28	1.44%	19.19	99.79%
Austin Creek	111	0.01	0.01%	0.01	0.01%	0.01	0.01%	100.81	90.51%
HR Total	26,005	12	0.05%	36	0.14%	69	0.27%	3,184	12.24%

Table A-NC11. WAFR Fraction

taf = thousand acre-feet

* Please note that the outflow is based on gaged streams only. The final WAFR estimates include outflow from the WEAP model for both gaged and ungaged watersheds.

Final WAFR Estimates

The outflow estimate simulated using the WEAP model was then multiplied by the range of water available for replenishment fractions determined by the historical gage data to determine the estimated range of WAFR estimates within the hydrologic region. The array of estimates for the North Coast HR, PA 101, PA 102, PA 103, and PA 104 are shown in Table A-NC11 using the WEAP outflow from Table A-NC8 and water available for replenishment fractions from Table A-NC11 above.

Geographical Region	WEAP Outflow (maf)	No Project Estimate (maf)	Lower Sensitivity Range Estimate (maf, WAFR Fraction 0.05%)	Best Estimate (maf, WAFR Fraction 0.14%)	Upper Sensitivity Range Estimate (maf, WAFR Fraction 0.27%)	Maximum Project Estimate (maf, WAFR Fraction 12.24%)
North Coast HR	27.56	0	0.0138	0.0386	0.0744	3.3740
PA 101	1.18	0	0.0006	0.0017	0.0032	0.1447
PA 102	13.67	0	0.0068	0.0191	0.0369	1.6734
PA 103	11.47	0	0.0057	0.0161	0.0310	1.4043
PA 104	1.76	0	0.0009	0.0025	0.0048	0.2158

Table A-NC12. Fi	nal WAFR estimates
------------------	--------------------

maf = million acre-feet

WAFR = Water Available for Replenishment

Potential Water Development by Other Methods (recycled water, desalination and water conservation)

Estimates of potential water development by other methods (recycled water, desalination and water conservation) are also shown for North Coast hydrologic region in Table A-NC13. Note that these estimates were not specifically made for use for groundwater replenishment and will need to be considered by GSAs more thoroughly for such purpose.

Method	Volume of Water Increase from 2010 to 2020
Recycle	0.01 taf
Desalination	0 taf
Conservation	0.01 taf

Table A-NC13. North Coast Urban Water Portfolio Actions

taf-Thousand Acre-feet

San Francisco Hydrologic Region

The <u>San Francisco Bay Hydrologic Region</u> includes all of San Francisco County and portions of Marin, Sonoma, Napa, Solano, San Mateo, Santa Clara, Contra Costa, and Alameda counties. It occupies approximately 4,500 square miles; from southern Santa Clara County to Tomales Bay in Marin County; and inland to near the confluence of the Sacramento and San Joaquin rivers at the eastern end of Suisun Bay. The eastern boundary follows the crest of the Coast Ranges, where the highest peaks are more than 4,000 feet above mean sea level <u>(California Water Plan Update 2013)</u>.

The San Francisco Bay region is divided into two Planning Areas: Northern Planning Area, PA 201, and Southern Planning Area, PA 202. San Francisco Bay, PA 201 and PA 202 are shown in Figure A-SF1.

Summary of WAFR Information and Estimates

WAFR information and estimates for San Francisco Bay Hydrologic Region, Planning Area 201, and Planning Area 202 are shown in Figures A-SF2 and A-SF3.

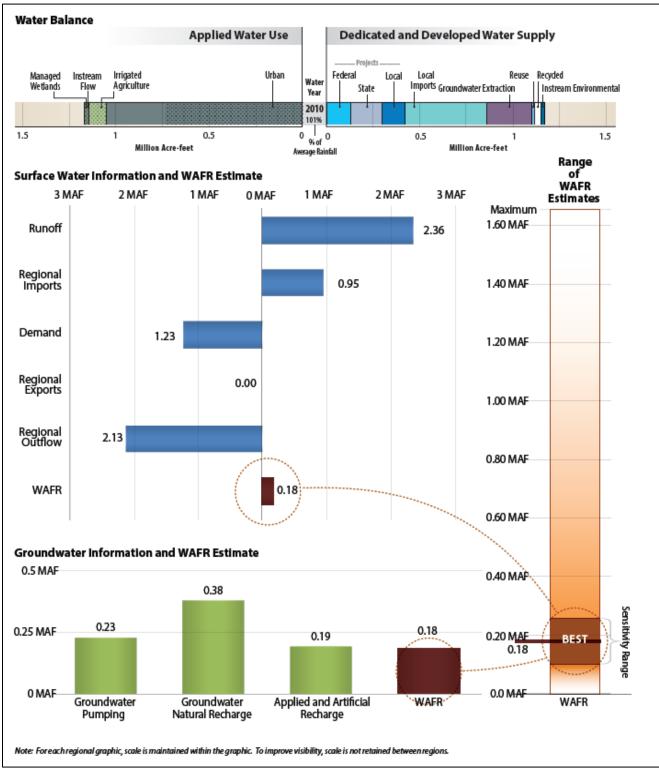


Figure A-SF2. San Francisco Bay Hydrologic Region WAFR Information and Estimates

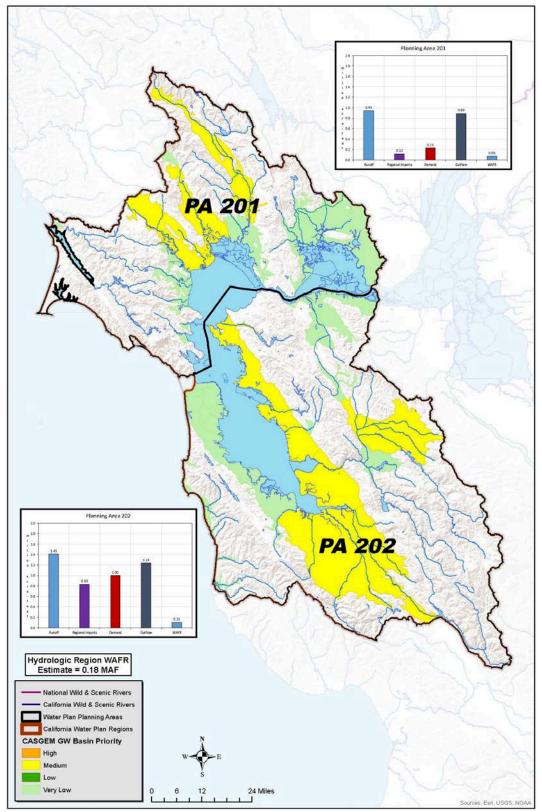


Figure A-SF3. San Francisco Bay Hydrologic Region PA 201 and 202 WAFR Information and Estimates

WAFR Information and Estimates

Covering a total of 4,560 square miles, the San Francisco Bay Hydrologic Region (HR) spans from Marin County in the north to the northern end of Santa Cruz County in the south. The region is heavily populated, and includes San Francisco and numerous other surrounding cities. The San Francisco Bay Hydrologic Region is the discharge point for a significant portion of California's runoff. The entire Bay-Delta watershed discharges into the region through the Sacramento River and the water eventually leaves the region through the Golden Gate.

Some water agencies in the region have imported water from the Sierra Nevada for nearly a century to supply their customers. Water from the Mokelumne and Tuolumne rivers accounts for about 38 percent of the region's average annual water supply. Water from the Sacramento-San Joaquin Delta (Delta), via the federal Central Valley Project (CVP) and the State Water Project (SWP), accounts for another 28 percent. Approximately 31 percent of the average annual water supply is from local groundwater and surface water; and 3 percent is from miscellaneous sources such as harvested rainwater, recycled water, and transferred water. Population growth and diminishing water supply and water quality have led to the development of local surface water supplies, recharge of groundwater basins, and incorporation of conservation guidelines to sustain water supply and water quality for future generations (California Water Plan Update 2013).

The Sacramento and San Joaquin rivers flow into the Delta and into San Francisco Bay. The Delta is the largest estuary on the West Coast, receiving nearly 40 percent of the state's surface water from the Sierra Nevada and the Central Valley. The interaction between Delta outflow and Pacific Ocean tides determines how far salt water intrudes into the Delta. The resulting salinity distribution influences the distribution of many estuarine fish and invertebrates, as well as the distribution of plants, birds, and animals in wetlands areas. Delta outflow varies with precipitation, reservoir releases, and upstream diversions (California Water Plan Update 2013).

The average precipitation for the region is 27.6 inches, primarily falling as rain. The following sections provide the WAFR information and estimates and describe how it was determined for each Planning Area within the San Francisco Bay Hydrologic Region.

Surface Water and Groundwater Information

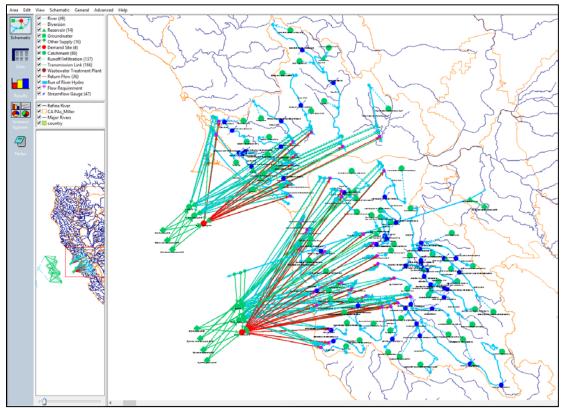
San Francisco Bay, PA 201, and PA 202 surface water and groundwater information (as defined in the Surface Water and Groundwater Information section) is provided in Table A-SF1.

Geographical Region	Regional Imports (MAF)	Regional Exports (MAF)	Groundwater Pumping (MAF)	Groundwater Natural Recharge (MAF)	Applied and Artificial Recharge (MAF)
San Francisco					
Bay HR	0.95	0.00	0.23	0.38	0.19
PA 201	0.12	0	-	-	-
PA 202	0.83	0	-	-	-

Table A-SF1. San Francisco Bay, PA 201, and PA 202 Surface Water and Groundwater Information

WAFR Estimates

The following sections describe how the WAFR estimates were determined.


WEAP Model

The San Francisco Bay WEAP Model was developed using the procedures described in the <u>WEAP Model</u> <u>Methodology section</u> and described in more detail in the following sections.

Model Domain

The San Francisco Bay WEAP Model domain is shown in Figure A-SF4.

Figure A-SF4. San Francisco Bay WEAP Model

Streams/Rivers and Delineation of Watershed

The San Francisco Bay WEAP Model streams/rivers with corresponding Planning Area are shown in Table A-SF2.

River/Stream (PA 201)	River/Stream (PA 202)		
Corte Madera Creek	Agua Caliente	Permanente Creek	
Drakes Bay	Alameda Creek	Pescadero Creek	
Lagunitas Creek	Alamo Creek	Pilarcitos Creek	
Miller Creek	Arroyo Hondo	Pruisima Creek	
Napa River	Arroyo Mocho	Rodeo Creek	
Nicasio Creek	Arroyo Valle	San Antonio Creek	
Novato Creek	Butano Creek	San Francisquito Creek	
Petaluma River	Cerrito Creek	San Gregorio Creek	
Sage Creek	Colma Creek	San Leandro Creek	
Sonoma Creek	Coyote Creek	San Lorenzo Creek	
Walker Creek	Crow Creek	San Mateo Creek	
Wooden Valley Creek	Cull Creek	San Ramon Creek	
	Frontal San Francisco Bay	Saratoga Creek	
	Guadalupe River	Sausal Creek	
	Lobos Creek	Up Penitencia Creek	
	Los Gatos Creek	Wildcat Creek	
	Pacheco Creek		

Watersheds in San Francisco Bay region were delineated to determine the runoff from each stream using the procedures described in the <u>WEAP Model Methodology section</u>.

Reservoir

Reservoirs included in the San Francisco Bay WEAP model with the corresponding Planning Areas are:

- Alpine Lake (Lagunitas Creek, PA 201).
- Anderson Lake (Coyote Creek, PA 202).
- Briones Reservoir (Rodeo Creek, PA 202).
- Calaveras Reservoir (Arroyo Hondo, PA 202).
- Crystal Springs Reservoir (San Mateo Creek, PA 202).
- Kent Lake (Lagunitas Creek, PA 201).
- Lake Chabot (San Leandro Creek, PA 202).
- Lake Del Valle (Arroyo Valle, PA 202).
- Lake Hennessey (Sage Creek, PA 201).

- Los Vaqueros Reservoir (Contra Costa Canal System, PA 202).
- Nicasio Reservoir (Nicasio Creek, PA 201).
- San Andreas Lake (San Mateo Creek, PA 202).
- San Antonio Reservoir (San Antonio Creek, PA 202).
- San Pablo Reservoir (Rodeo Creek, PA 202).
- Upper San Leandro Reservoir (San Leandro Creek, PA 202).

Demands

The San Francisco Bay region demands were determined using the procedures described in <u>WEAP Model</u> <u>Methodology section</u> and described in the following sections.

Urban Indoor Demand

The Urban Indoor Annual Activity Level and Annual Water Use Rate for each Planning Area are shown in Table A-SF3.

	PA 2	01	PA 202		
Category	Annual Activity Level (person/household)	Annual Water Use Rate (TAF per person/househol d)	Annual Activity Level (person/household)	Annual Water Use Rate (TAF per person/household)	
Commercial	393,640	0.000033	3,203,111	0.000033	
Industrial	49,532	0.000277	256,184	0.000277	
Multi-					
Family	113,363	0.000154	761,730	0.000154	
Single-					
Family	186,139	0.000217	1,250,735	0.000217	

Table A-SF3. Annual Activity Level and Annual Water Use Rate by Category

Urban Outdoor Demand

The acres for each land use class by Planning Area are shown in Table A-SF4.

Table A-SF4. Urban Outdoor Land Use Class Acres

Land Use Class	PA 201 Acres	PA 202 Acres
Commercial	2,511.74	22,357.01
Multi-Family	1,986.32	10,987.68
Public	4,863.41	19,924.59
Single-Family	12,702.75	70,267.50
Total	22,064.22	123,536.78

Agricultural Demand

The acres for each crop type by Planning Area are shown in Table A-SF5.

Const.	PA 201 Acres	PA 202 Acres
Сгор	(thousand)	(thousand)
Grain	1.331	0.096
Pasture	4.61	1.97
Processed Tomato	0.014	0.004
Fresh Tomato	0	0.003
Cucurbits	0.186	0.491
Onion and Garlic	0.013	0.107
Potato	0	0
Other Truck	1.183	5.24
Almond and Pistachio	0.008	0.132
Other Deciduous	1.26	0.588
Sub-Tropical	0.658	0.1
Rice	0	0
Vine	57.574	3.301
Cotton	0	0
Sugar Beet	0	0
Corn	0.199	0.23
Dry Bean	0.146	0.053
Safflower	0.706	0
Other Field	0.077	0
Alfalfa	0	0.068
Total	67.965	12.383

Table A-SF5.	Cron	acres	hv	Cron	Type
	CIOP	acics	Ny.	CIUP	IYPC

Calibration

The San Francisco Bay WEAP Model was calibrated using the procedures described in the <u>WEAP Model</u> <u>Methodology section</u>.

Calibration Data Collection

Calibrated Watersheds with corresponding gage information are shown in Table A-SF6.

Gage Name	Site Number	Drainage Area (Square Miles)	Gage Flow Starting Date	Gage Flow Ending Date
ALAMEDA C AB DIV DAM NR SUNOL CA	11172945	33.3	10/1/1994	5/31/2016
ARROYO HONDO NR SAN JOSE CA	11173200	77.1	10/1/1968	5/31/2016
ARROYO MOCHO NR LIVERMORE CA	11176000	38.2	4/1/1912	1/31/2002
ARROYO VALLE BL LANG CN NR LIVERMORE CA	11176400	130	10/1/1963	4/30/2016
COLMA C A SOUTH SAN FRANCISCO CA	11162720	10.8	10/1/1963	11/30/1996
COYOTE C NR GILROY CA	11169800	109	10/1/1960	10/31/2016
CORTE MADERA C A ROSS CA	11460000	18.1	2/1/1951	5/31/2016
CROW C NR HAYWARD CA	11180900	10.5	10/1/1997	5/31/2016
CULL C AB CULL C RES NR CASTRO VALLEY CA	11180960	5.79	10/1/1978	7/31/2016
GUADALUPE R AB ALMADEN EXPRESSWAY A SAN JOSE CA	11167800	61.8	10/1/2003	10/31/2011
NAPA RIVER NEAR ST. HELENA CALIF	11456000	78.8	10/1/1929	3/31/2016
NOVATO C A NOVATO CA	11459500	17.6	10/1/1946	3/31/2016
PESCADERO C NR PESCADERO CA	11162500	45.9	4/1/1951	10/31/2016
PILARCITOS C A HALF MOON BAY CA	11162630	27.1	7/1/1966	10/31/2016
SAN FRANCISQUITO C A STANFORD UNIVERSITY CA	11164500	37.4	10/1/1930	6/30/2016
SAN GREGORIO C A SAN GREGORIO CA	11162570	50.9	10/1/1969	6/30/2016
SARATOGA C A SARATOGA CA	11169500	9.22	10/1/1933	2/28/2016
SAN LORENZO C A SAN LORENZO CA	11181040	44.6	10/1/1967	6/30/2016
SAN RAMON C AT WALNUT CREEK CA	11183000	50.8	10/1/1952	9/30/1973

Table A-SF6. Calibrated Gage Locations

SONOMA C A AGUA CALIENTE CA	11458500	58.4	2/1/1955	6/30/2016
UP PENITENCIA C A SAN JOSE CA	11172100	21.5	10/1/1961	9/30/1987
WALKER C NR MARSHALL CA	11460750	31.1	10/1/1983	5/31/2016
WILDCAT C A VALE RD AT RICHMOND CA	11181390	7.79	10/1/1975	6/30/1996

Calibration Results

Calibrated Watersheds with corresponding NSE and PBIAS are shown in Table A-SF7.

Table A-SF7. Calibrated Watersheds with corresponding NSE and PBIAS						
Location	Nash Sutcliffe Coefficient of Efficiency (NSE)	Percent Bias (PBIAS)				
ALAMEDA CREEK	0.88	-2.94				
ARROYO HONDO	0.89	6.75				
ARROYO MOCHO	0.76	-7.40				
COLMA CREEK	0.76	3.73				
ARROYO VALLE	0.81	0.90				
COYOTE CREEK	0.83	-9.59				
CORTE MADERA	0.92	-6.11				
CROW CREEK	0.91	-0.11				
CULL CREEK	0.83	6.92				
GUADALUPE RIVER	0.64	7.99				
NAPA RIVER	0.96	0.21				
NOVATO CREEK	0.91	7.76				
PESCADERO CREEK	0.91	-2.27				
PILARCITOS CREEK	0.88	-3.23				
SAN FRANCISQUITO CREEK	0.88	5.57				
SAN GREGORIO CREEK	0.87	-5.67				
SARATOGA CREEK	0.87	-6.11				
SAN LORENZO CREEK	0.88	10.38				
SAN RAMON CREEK	0.79	-4.57				
SONOMA CREEK	0.93	-3.80				
UP PENITENCIA CREEK	0.84	-4.61				
WALKER CREEK	0.92	8.00				
WILDCAT CREEK	0.90	1.66				

Table A-SF7. Calibrated Watersheds with corresponding NSE and PBIAS

WEAP Outflow

The WEAP outflow for San Francisco Bay, PA 201, and PA 202 is shown in Table A-SF8.

Geographical Region	Outflow (MAF)
San Francisco Bay	2.13
PA 201	0.89
PA 202	1.24

Table A-SF8. San Francisco Bay, PA 201, and PA 202 WEAP Outflow

WAFR Fraction

The following sections describe how the WAFR Fraction was determined for San Francisco Bay, PA 201, and PA 202.

Gage Data

To begin this analysis, gage data for the major rivers in the San Francisco Bay region was compiled. In each river or stream, the most downstream gage was selected to account for water demands within the watershed and to develop a WAFR fraction that is applicable to regional outflow.

The San Francisco Bay region has many gages, yet finding gaged streams with relatively complete records was challenging. A total of 23 gages were used, representing runoff from approximately 44 percent of the region. A summary of the stream gages used in this analysis is presented in Table A-SF9. A map showing the locations of the gages used, and their respective watersheds, is shown as Figure A-SF5.

River/Stream	River/Stream Location		Area (square miles)
Alameda Creek	Union City	11180700	639
Coyote Creek	San Jose	11172175	319
Guadalupe River	San Jose	11169000	146
Napa River	Napa	11458000	218
Pescadero Creek	Pescadero	11162500	46
Petaluma River	Petaluma	11459150	45
San Lorenzo Creek	San Lorenzo	11181040	45
Sonoma Creek	Agualiente	11458500	58
Walnut Creek	Concord	11183600	85
Butano Creek	Pescadero	11162540	18
Colma Creek	S San Franciso	11162720	11
Corte Madera Creek	Ross	11460000	18

Table A-SF9. Major Rivers and Gages in San Francisco Bay Hydrologic Region Analysis

River/Stream	Location	USGS Gage	Area
Lagunitas Creek	Pt Reyes Station	11460600	82
Matadero Canal	Palo Alto	11166000	7
Novato Creek	Novato	11459500	18
Pilarcitos Creek	Half Moon Bay	11162630	27
Pinole Creek	Pinole	11182100	10
San Gregorio Creek	San Gregorio	11162570	51
San Mateo Creek	San Mateo	11162753	30
Walker Creek	Tomales	11460800	40
Wildcat Creek	Richmond	11181400	9
Napa Creek	Napa	11458300	15
San Francisquito Creek	Stanford University	11164500	37

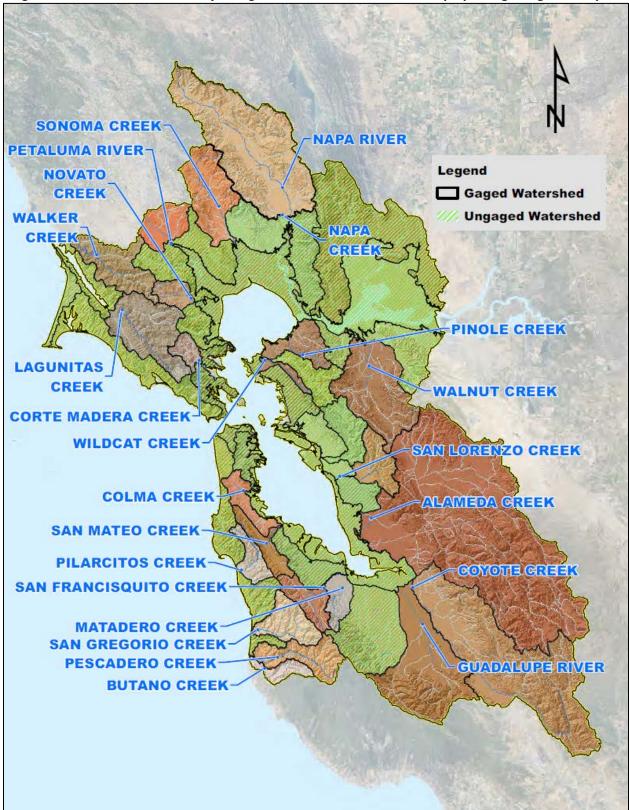


Figure A-SF5. Watersheds for Major Gaged Streams in San Francisco Bay Hydrologic Region Analysis

Once the available gage data was compiled, the periods of available data for the twenty tree gages were compared to determine a period of analysis. Data availability, by year, is presented in Figure A-SF6.

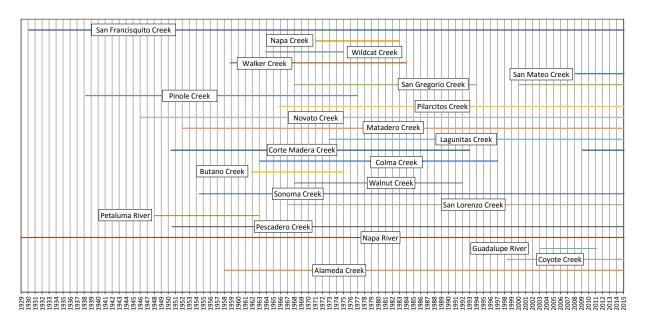


Figure A-SF6. Period of Available Gage Data in San Francisco Bay Hydrologic Region Analysis

In the San Francisco Bay Hydrologic Region, several streams are listed as Fully Appropriated, but no stream is designated Fully Appropriated year-round.

The gage data outflow, diverted water using Conceptual Project (WAFR), and WAFR Fraction (diverted water using Conceptual Project (WAFR)/Gage Data Outflow) for each stream and the San Francisco Bay Hydrologic Region is shown in Table A-SF10.

	Gage Data	Data Range Estimate		Best E	stimate		ensitivity stimate		n Project nate
River/Stream	Outfl ow (TAF) *	WAFR (TAF)	WAFR Fraction (%)	WAFR (TAF)	WAFR Fraction (%)	WAFR (TAF)	WAFR Fraction (%)	WAFR (TAF)	WAFR Fraction (%)
Alameda Creek	77.2	24.62	31.88%	40.18	52.04%	52.31	67.75%	67.24	87.09%
Butano Creek	18	0.16	0.90%	0.42	2.31%	0.79	4.38%	16.22	90.38%
Colma Creek	6.2	0	0.00%	0	0.00%	0	0.00%	4.47	72.40%
Corte Madera	20.1	0.02	0.12%	0.07	0.34%	0.14	0.68%	16.76	83.34%
Creek									
Coyote Creek	29.4	6.72	22.91%	12.52	42.66%	15.77	53.72%	17.63	60.07%
Guadalupe	44.4	0.04	0.08%	0.1	0.23%	0.2	0.45%	35.4	79.72%
River	65.2	2 72	4.100/	6.05	10.020/	11 70	10.050/	FO 1F	76 700/
Lagunitas Creek	65.3	2.73	4.18%	6.95	10.63%	11.79	18.05%	50.15	76.79%
Matadero Canal	2.3	0	0.00%	0	0.00%	0	0.00%	1.85	81.00%
Napa Creek Napa River	14.8 151.2	4.58	0.02%	0.01 9.86	0.07% 6.52%	0.02 17.33	0.13%	12.39 144.5	83.95% 95.59%
Novato Creek	9.6	0.14	1.46%	0.38	3.96%	0.7	7.32%	8.06	83.75%
Pescadero Creek	29.5	0.01	0.05%	0.04	0.15%	0.09	0.29%	22.48	76.21%
Petaluma River	200.4	0.25	0.13%	0.93	0.46%	1.84	0.92%	118.37	59.06%
Pilarcitos Creek	11.2	0.1	0.87%	0.29	2.60%	0.56	4.95%	8.57	76.36%
Pinole Creek	3.1	0	0.00%	0	0.00%	0	0.00%	2.51	82.15%
San	16.4	0.21	1.29%	0.59	3.57%	1.09	6.63%	13.7	83.60%
Francisquito									
Creek San Gregorio	23.3	0.05	0.20%	0.15	0.63%	0.29	1.24%	18.1	77.74%
Creek									
San Lorenzo	15.6	0.02	0.11%	0.05	0.33%	0.1	0.64%	11.87	76.10%
Creek									
San Mateo	2.5	1.44	56.76%	1.7	67.02%	1.7	67.02%	1.7	67.02%
Creek Sonoma Creek	49.1	0.03	0.06%	0.09	0.18%	0.18	0.37%	40.28	81.99%
Walker Creek	43.7	0	0.00%	0	0.00%	0	0.00%	36.74	84.17%
Walnut Creek	33.6	0.02	0.05%	0.06	0.18%	0.12	0.36%	23.77	70.80%
Wildcat Creek	4.4	0.04	0.88%	0.11	2.50%	0.21	4.78%	3.55	80.98%
HR Total	871.1 0	41.18	4.73%	74.48	8.55%	105.21	12.08%	676.32	77.64%

Table A-SF10. WAFR Fraction

* Please note that the outflow is based on gaged streams only. The final WAFR estimates include outflow from the WEAP model for both gaged and ungaged watersheds.

Final WAFR Estimates

The outflow from the Gage Data was then multiplied by the range of water available for replenishment fractions determined by the historical gage data to determine the estimated range of WAFR estimates within the hydrologic region. The array of estimates for San Francisco Bay, PA 201 and PA 202 are shown in Table A-SF11 using the WEAP outflow from Table A-SF8 and water available for replenishment fractions from Table A-SF10 above.

Geographical Region	WEAP Outflow (MAF)	No Project Estimate (MAF)	Lower Sensitivity Range Estimate (MAF, WAFR Fraction 4.73%)	Best Estimate (MAF, WAFR Fraction 8.55%)	Upper Sensitivity Range Estimate (MAF, WAFR Fraction 12.08%)	Maximum Project Estimate (MAF, WAFR Fraction 77.64%)
San Francisco Bay Hydrologic Region	2.13	0	0.101	0.182	0.257	1.655
PA 201	0.89	0	0.042	0.076	0.108	0.694
PA 202	1.24	0	0.059	0.106	0.149	0.961

Potential Water Development by Other Methods (recycled water, desalination and water conservation)

Estimates of potential water development by other methods (recycled water, desalination and water conservation) are also shown for San Francisco Bay region in Table A-SF12. Note that these estimates were not specifically made for use for groundwater replenishment and will need to be considered by GSAs more thoroughly for such purpose.

Table A-SF12. San Francisco Bay Urban Water Portfolio	Actions
---	---------

Method	Volume of Water Increase from 2010 to 2020
Recycle	0.02 MAF
Desalination	-
Conservation	0.02 MAF

Central Coast Hydrologic Region

The <u>Central Coast HR</u> covers a total of 11,326 square miles, and spans from southern San Mateo County in the North to the southern end of Santa Barbra County in the South. The region has several major population centers, including Santa Cruz, San Luis Obispo, Santa Maria, and Santa Barbara. The region includes highly variable vegetation and topography. Central Coast economy relies heavily on agriculture and viticulture and includes the Salinas Valley, a major agricultural hub. On an average annual basis, 23.5 inches of precipitation fall upon the region, with the vast majority falling as rain and very little falling as snow. The region receives some State Water Project (SWP) water from the Coastal Branch of the California Aqueduct. The region is the most groundwater-dependent HR in California. 80 percent of the agricultural, municipal, and domestic water demands are met by extraction of groundwater (<u>California Water Plan Update 2013</u>).

The Central Coast is divided into two Planning Areas: Northern Planning Area, PA 301, and Southern Planning Area, PA 302. Central Coast HR, PA 301 and PA 302 are shown in Figure A-CC1.

Summary of WAFR Information and Estimates

WAFR information and estimates for Central Coast Hydrologic Region, Planning Area 301, and Planning Area 302 are shown in Figures A-CC2 and A-CC3.

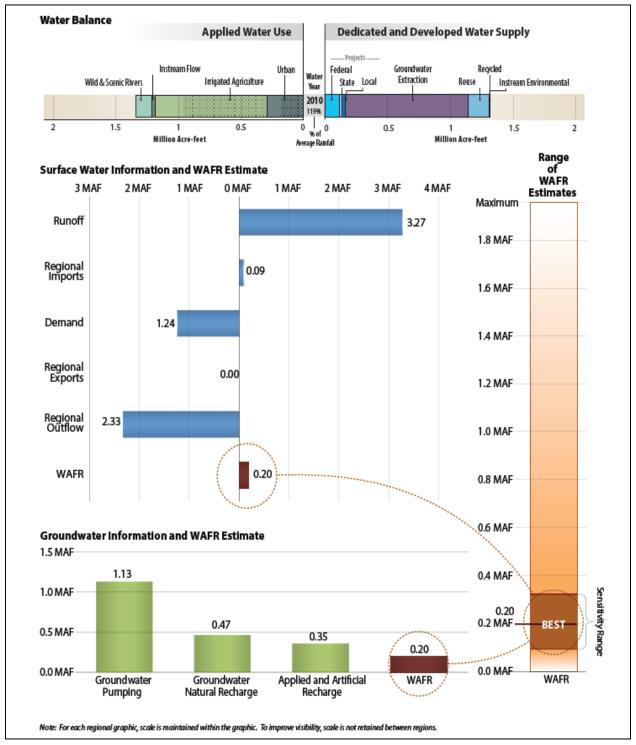


Figure A-CC2. Central Coast Hydrologic Region WAFR Information and Estimates

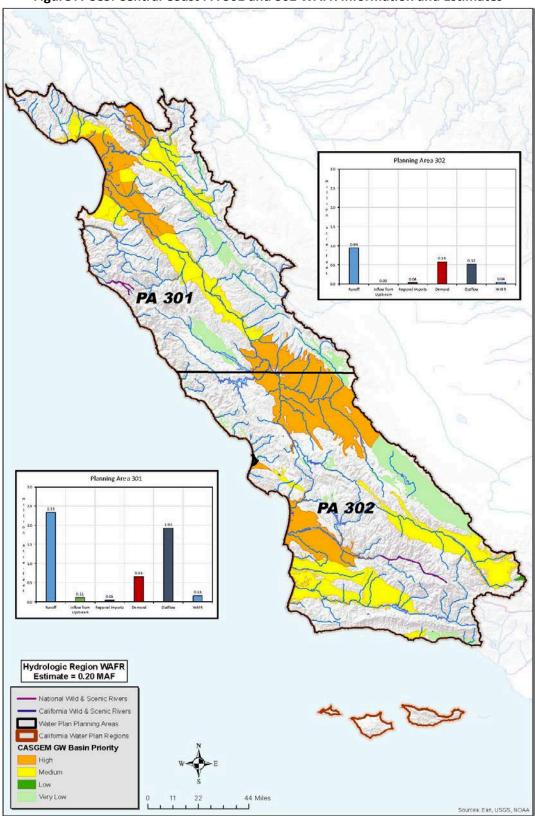


Figure A-CC3. Central Coast PA 301 and 302 WAFR Information and Estimates

WAFR Information and Estimates

The major tributaries in the Central Coast are the Santa Ynez River, Santa Maria River, Nacimiento River, San Antonio River, Salinas River, San Benito River and Pajaro River.

Central Coast also receives imports from both the State Water Project (SWP) and Central Valley Water Project (CVP). Actual volume of water delivered varies annually (California Water Plan Update 2013).

The WAFR information and estimates is provided in the following sections.

Surface Water and Groundwater Information

Central Coast, PA 301, and PA 302 surface water and groundwater information (as defined in the Surface Water and Groundwater Information section) is provided in Table A-CC1.

Geographical Region	Regional Imports (MAF)	Regional Exports (MAF)	Groundwater Pumping (MAF)	Groundwater Natural Recharge (MAF)	Applied and Artificial Recharge (MAF)
Central					
Coast HR	0.09	0.00	1.13	0.47	0.35
PA 301	0.05	0	-	-	-
PA 302	0.04	0	-	-	-

WAFR estimates

The following sections describe how the WAFR estimates were determined.

WEAP Model

The Central Coast WEAP Model was developed using the procedures described in the <u>WEAP Model</u> <u>Methodology section</u> and described in more detail in the following sections.

Model Domain

The Central Coast WEAP Model domain is shown in Figure A-CC4.

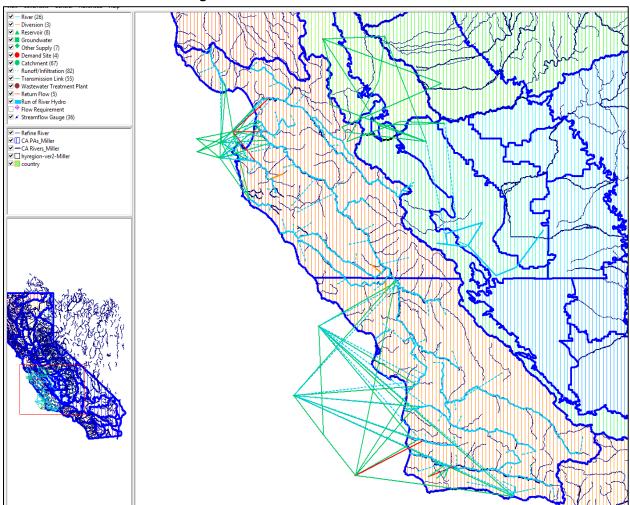


Figure A-CC4. Central Coast WEAP Model

Streams/Rivers and Delineation of Watershed

The Central Coast WEAP Model streams/rivers with corresponding Planning Area are shown in Table A-CC2.

River/Stream (PA 301)	River/Stream (PA 302)	
Big Sur River	Cuyama River	
Tres Pinos Creek	Estrella River	
Uvas Creek	Huasna River	
Carmel River	Lopez Creek	
Clear Creek	San Antonio Creek	
Gabilan Creek	San Jose Creek	
Nacimiento River	Santa Cruz Creek	
San Antonio River	Santa Maria River	
San Benito River	Santa Ynez River	
San Lorenzo River	Sisquoc River	
Pajaro River	Salinas River	
Salinas River		
San Lorenzo Creek		

Watersheds in Central Coast were delineated to determine the runoff from each stream using the procedures described in the WEAP Model Methodology section.

Reservoir

Reservoirs included in the Central Coast HR WEAP model with the corresponding Planning Areas are:

- Gibraltar Reservoir (Santa Ynez River, PA 302).
- Jameson Reservoir (Santa Ynez River, PA 302).
- Lake Cachuma (Santa Ynez River, PA 302).
- Twitch Reservoir (Cuyama River, PA 302).
- Salinas Reservoir (Salinas River, PA 302).
- Nacimiento Reservoir (Nacimiento River, PA 301).
- San Antonio Reservoir (San Antonio River, PA 301).

Demands

The Central Coast demands were determined using the procedures described in <u>WEAP Model</u> <u>Methodology section</u> and described in the following sections.

Urban Indoor Demand

The Urban Indoor Annual Activity Level and Annual Water Use Rate for each Planning Area are shown in Table A-CC3.

	PA 301		PA 302		
Category	Annual Activity Level (person/household)	Annual Water Use Rate (TAF per person/househol d)	Annual Activity Level (person/household)	Annual Water Use Rate (TAF per person/household)	
Commercial	536,813.24	0.000032	276,540.16	0.000032	
Industrial	30,201.60	0.00035	15,558.40	0.00035	
Multi-					
Family	103,076.82	0.000196	53,100.18	0.000205	
Single-					
Family	242,841.98	0.000221	125,100.42	0.000228	

Table A-CC3. Annual Activity Level and Annual Water Use Rate by Category

Urban Outdoor Demand

The acres for each land use class by Planning Area are shown in Table A-CC4.

Table A-CC4. Orban Outdoor Land Ose Class Acres				
Land Use Class	PA 301 Acres	PA 302 Acres		
Commercial	2,883.54	1,289.46		
Multi-Family	1,380.12	1,874.88		
Public	670.49	1,478.51		
Single-Family	4,821.73	6,550.27		
Total	9,755.88	11,193.12		

Table A-CC4. Urban Outdoor Land Use Class Acres

Agricultural Demand

The acres for each crop type by Planning Area are shown in Table A-CC5.

Сгор	PA 301 Acres (thousand)	PA 302 Acres (thousand)
Grain	1.3	4.84
Pasture	7.4	7.57
Processed Tomato	2.9	0
Fresh Tomato	1.3	0.59
Cucurbits	1.8	2.49
Onion and Garlic	4.7	0.24
Potato	0	0.27
Other Truck	344.3	115.56
Almond and Pistachio	0	0.98
Other Deciduous	6.6	4.2
Sub-Tropical	1.5	15.37
Rice	0	0
Vine	45.8	56.48
Cotton	0	0
Sugar Beet	0	0
Corn	0.2	1.02
Dry Bean	0.9	2.47
Safflower	0.6	0.05
Other Field	2.3	0.75
Alfalfa	0.5	4.33
Total	422.1	217.21

 Table A-CC5. Crop acres by Crop Type

Calibration

The Central Coast WEAP Model was calibrated using the procedures described in the <u>WEAP Model</u> <u>Methodology section</u>.

Calibration Data Collection

Calibrated Watersheds with corresponding gage information are shown in Table A-CC6.

Table A-CC6. Calibrated Gage Locations				
Gage Name	Site Number	Drainage Area (Square Miles)	Gage Flow Starting Date	Gage Flow Ending Date
SAN LORENZO R NR BOULDER C CA	11160020	6.17	6/26/1969	12/10/1996
UVAS C AB UVAS RES NR MORGAN HILL CA	11153900	21	2/9/1962	1/4/1982
CLEAR C NR IDRIA CA	11154700	14.5	2/19/1994	12/12/2014
ESTRELLA R NR ESTRELLA CA	11148500	922	2/27/1955	2014
SAN LORENZO C BL BITTERWATER C NR KING CITY CA	11151300	233	2/18/1959	3/1/2014
SAN ANTONIO R NR LOCKWOOD CA	11149900	217	12/31/1965	3/3/2014
NACIMIENTO R BL SAPAQUE C NR BRYSON CA	11148900	162	12/25/1971	2/8/2015
BIG SUR R NR BIG SUR CA	11143000	46.5	3/24/1950	2/8/2015
CUYAMA R BL BUCKHORN CYN NR SANTA MARIA CA	11136800	886	3/12/1904	3/2/2014
HUASNA R NR ARROYO GRANDE CA	11137900	103	2/1/1960	5/1/2014
SISQUOC R NR GAREY	11140000	471	3/5/1941	3/2/2014
SAN ANTONIO C A LOS ALAMOS CA	11135800	34.9	12/21/1970	2014
SANTA CRUZ C NR SANTA YNEZ CA	11124500	74	12/28/1941	3/1/2014
CARMEL R A ROBLES DEL RIO CA	11143200	193	12/23/1955	12/12/2014
SAN JOSE C NR GOLETA CA	11120500	5.51	4/4/1941	3/1/2014
SAN LORENZO C A KING CITY CA	11151500	259	3/8/1943	1/27/1997
GABILAN C NR SALINAS CA	11152600	36.7	12/21/1970	2/28/2014
TRES PINOS C NR TRES PINOS CA	11157500	208	1938-02	2015

Table A-CC6. Calibrated Gage Locations

Calibration Results

Calibrated Watersheds with corresponding NSE and PBIAS are shown in Table A-CC7.

Stream Gage Name and River Name	Nash Sutcliffe Coefficient of Efficiency (NSE)	Percent Bias (PBIAS)		
NR Santa Maria @ Cuyama River	0.60	14.53		
NR Garey @ Sisquoc River	0.55	-3.61		
NR Arroyo Grande CA @ Huasna River	0.77	3.80		
NR Estrella CA @ Estrella River	0.65	3.70		
Nacimiento Full Natural Flow @ Nacimietno River	0.83	0.96		
NR Big Sur CA @ Big Sur River	0.69	4.95		
A Robles Del Rio @ Carmel River	0.67	-0.89		
Arroyo Grande CA @ Lopez Creek	0.66	0.76		
Los Alamos CA @ San Antonio Creek	0.64	16.35		
NR King City CA @ San Lorenzo Creek	0.41	-5.96		
NR Idria CA @ Clear Creek	0.69	-8.33		
NR Boulder @ San Lorenzo R	0.84	12.68		
NR Santa Ynez @ Santa Cruz Creek	0.20	-0.09		
NR POZO CA @ Salinas River	0.77	3.66		
NR Goleta CA @ San Jose Creek	0.66	12.76		
NR Lockwood CA @ San Antonio River	0.77	6.13		
	0.77	0.10		
NR Salinas @ Gabilan Creek	0.81	-0.83		
NR Morgan Hill @ Uvas Creek	0.82	-0.47		
NR Tres Pinos @ Tres Pinos Creek	0.77	1.19		

WEAP Outflow

The WEAP outflow for Central Coast HR, PA 301, and PA 302 is shown in Table A-CC8.

Geographical Region	Outflow (MAF)	
Central Coast HR	2.33*	
PA 301	1.92	
PA 302	0.52	

Table A-CC8. Central Coast, PA 301, and PA 302 WEAP Outflow

*Please note the sum of the Planning Area outflow does not equal the hydrologic region. The Salinas River runs from PA 302 to PA 301. The outflow at the boundary of PA 302 (0.14 MAF) is double counted therefore adding the outflow from PA 302 and PA 301 yields 2.44 MAF (0.14 greater than the Central Coast HR).

WAFR Fraction

The following sections describe how the WAFR Fraction was determined for Central Coast, PA 301, and PA 302.

Gage Data

The total area of the gaged watersheds in Central Coast HR is 8,507 square miles of the 11,326 square mile region or approximately 75 percent of the hydrologic region. Gage data for the major rivers in the Central Coast HR was compiled. In each river or stream, the most downstream gage was chosen. Gage data for a total of nine major rivers and streams was compiled. A summary of the stream gages used in this analysis is presented in Table A-CC9. A map showing the locations of the gages used, and their respective watersheds are shown in Figure A-CC5.

River/Stream	Location	USGS Gage Number	Area (square miles)
Big Sur	Big Sur	11143000	47
Carmel	Carmel	11143250	247
Pajaro	Watsonville	11159500	1,272
Salinas	Spreckels	11152500	4,156
San Antonio	Casmalia	11136100	135
San Jose	Goleta	11120500	6
San Lorenzo	Santa Cruz	11161000	115
Santa Maria	Guadalupe	11141000	1,741
Santa Ynez	Lompoc	11133000	789

Table A-CC9. Major Rivers and Gages Used in Central Coast

Figure A-CC5. Watersheds for Major Gaged Streams in Central Coast

For each gage, data availability by year is presented in Figure A-CC6.

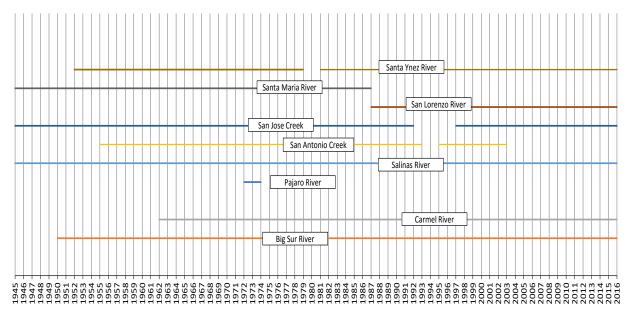


Figure A-CC6. Period of Available Gage Data

Two rivers in the Central Coast HR have been designated Wild & Scenic or Fully Appropriated. The Big Sur River is designated Wild and Scenic for most of its length, although a short stretch near the ocean is not designated as such; therefore water is available. The Carmel River is fully appropriated from May to December and is also considered in this analysis.

The gage data outflow, diverted water using conceptual project (WAFR), and WAFR Fraction (diverted water using conceptual project (WAFR)/Gage Data Outflow) for each stream and the Central Coast Hydrologic Region is shown in Table A-CC10. The Central Coast HR WAFR fraction is also used for Central Coast PA 301 and PA 302.

Diver (Stree	Gage		Sensitivity Estimate	Best E	stimate	••	Sensitivity Estimate		um Project imate
River/Strea m	Data Outflow (TAF)*	WAFR (TAF)	WAFR Fraction (%)	WAFR (TAF)	WAFR Fraction (%)	WAFR (TAF)	WAFR Fraction (%)	WAFR (TAF)	WAFR Fraction (%)
Big Sur River	72.5	0.0	0.00%	0.0	0.00%	0.0	0.00%	44.6	61.49%
Carmel River	72.2	2.8	3.91%	7.2	10.03%	12.8	17.76%	59.2	81.93%
San Lorenzo River	33.6	0.9	2.77%	2.7	8.04%	4.5	13.26%	29.2	86.91%
Pajaro River	135.7	0.0	0.01%	0.1	0.04%	0.1	0.08%	117.5	86.61%
Salinas River	268.6	14.1	5.23%	34.0	12.64%	57.5	21.39%	227.1	84.54%
Santa Ynez River	93.06	9.48	10.18%	14.29	15.36%	20.84	22.40%	92.55	99.45%
Santa Maria River	16.35	0.08	0.46%	0.22	1.37%	0.45	2.73%	12.73	77.82%
San Antonio Creek	4.71	0.01	0.12%	0.02	0.35%	0.03	0.69%	2.82	59.92%
Central Coast HR Total	696.75	27.39	3.93%	58.49	8.39%	96.17	13.80%	585.65	84.06%

Table A-CC10. WAFR Fraction

* Please note that the outflow is based on gaged streams only. The final WAFR estimates include outflow from the WEAP model for both gaged and ungaged watersheds.

Final WAFR Estimates

The outflow estimate simulated using the WEAP model was then multiplied by the range of water available for replenishment fractions determined by the historical gage data to determine the estimated range of WAFR estimates within the hydrologic region. The array of estimates for the Central Coast HR, PA 301 and PA 302 are shown in Table A-CC11 using the WEAP outflow from Table A-CC8 and water available for replenishment fractions from Table A-CC10 above.

Geographical Region	WEAP Outflow (MAF)	No Project Estimate (MAF)	Lower Sensitivity Range Estimate (MAF, WAFR Fraction 3.93%)	Best Estimate (MAF, WAFR Fraction 8.39%)	Upper Sensitivity Range Estimate (MAF, WAFR Fraction 13.80%)	Maximum Project Estimate (MAF, WAFR Fraction 84.06%)
Central Coast HR*	2.33	0	0.10	0.20	0.32	1.96
PA 301	1.92	0	0.08	0.16	0.27	1.62
PA 302	0.52	0	0.02	0.04	0.07	0.44

Table A-CC11. Final WAFR Estimates

*Please note the sum of the Planning Area outflow does not equal the hydrologic region. The Salinas River runs from PA 302 to PA 301. The outflow at the boundary of PA 302 (0.14 MAF) is double counted therefore adding the outflow from PA 302 and PA 301 yields 2.54 MAF (0.14 greater than the Central Coast HR). For the same reason, the sum of the PA WAFR does not equal the Central Coast HR WAFR.

Potential Water Development by Other Methods (recycled water, desalination and water conservation)

Estimates of potential water development by other methods (recycled water, desalination and water conservation) are also shown for Central Coast hydrologic region in Table A-CC12. Note that these estimates were not specifically made for use for groundwater replenishment and will need to be considered by GSAs more thoroughly for such purpose.

Method	Volume of Water Increase from 2010 to 2020		
Recycle	0 MAF		
Desalination	0.024 MAF		
Conservation	0.01 MAF		

Table A-CC12. Central Coast Urban Water Portfolio Actions

South Coast Hydrologic Region

Covering a total of 10,925 square miles, the <u>South Coast Hydrologic Region</u> spans from Ventura County in the north to the Mexican border in the south. This is the most populated HR in California, with a population of over 19 million – slightly less than half of the state's population. On an average annual basis, 17.6 inches of precipitation falls upon the region, with the majority falling as rain and very little falling as snow, making this one of the driest hydrologic regions in the state. The region receives a significant portion of water from non-local sources, with the State Water Project (SWP) importing water from the Delta through the California Aqueduct, Los Angeles importing water from the eastern Sierra through the LA Aqueduct, in addition to water being imported from Colorado River through the Colorado Aqueduct (<u>California Water Plan 2013</u>).

The South Coast is divided into four Planning Areas. Santa Clara (PA 401), Metro Los Angeles (PA402), Santa Ana (PA403), and San Diego (PA404).

Figure A-SC1. South Coast HR, PA 401, PA 402, PA 403, and PA 404

Summary of WAFR Information and Estimates

WAFR information and estimates for South Coast Hydrologic Region, Planning Area 401, Planning Area 402, Planning Area 403, and Planning Area 404 are shown in Figures A-SC2 and A-SC3.

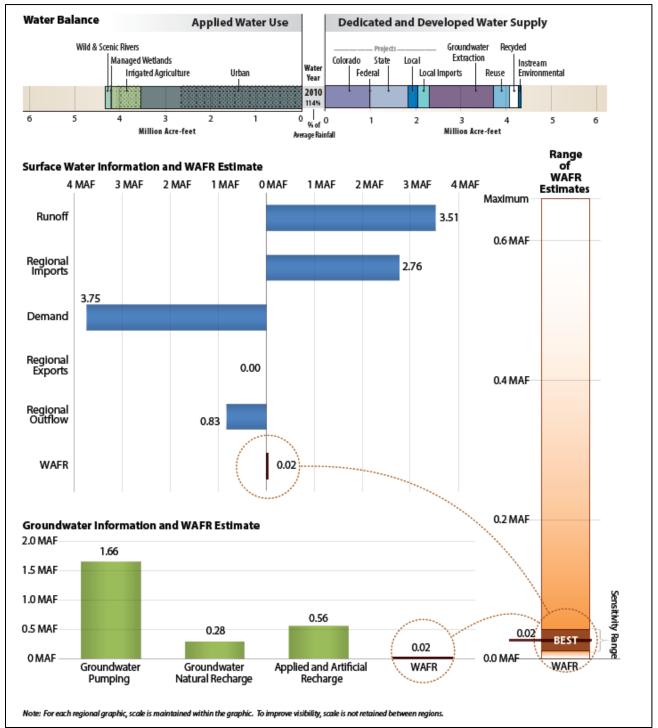


Figure A-SC2. South Coast Hydrologic Region WAFR Information and Estimates

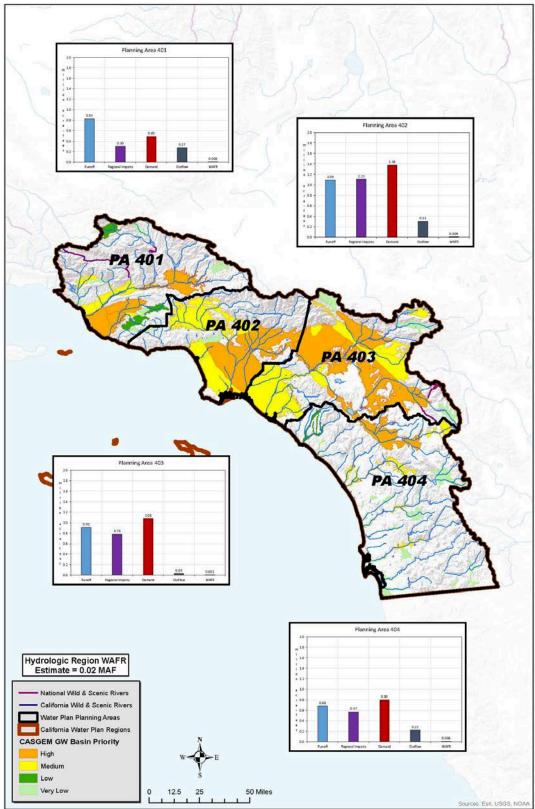


Figure A-SC3. South Coast Planning Area WAFR Information and Estimates

WAFR Information and Estimates

The major tributaries in the South Coast are the Ventura River, Santa Clara River, Los Angeles River, San Gabriel River, Santa Ana River, Santa Margarita River, San Luis Rey River, San Dieguito River, San Diego River, and Sweetwater River.

South Coast also receives imports from the State Water Project (SWP), The Colorado River Aqueduct, and The Los Angeles Aqueduct. Actual volume of water delivered varies annually (California Water Plan Update 2013).

The WAFR information and estimates is provided in the following sections.

Surface Water and Groundwater Information

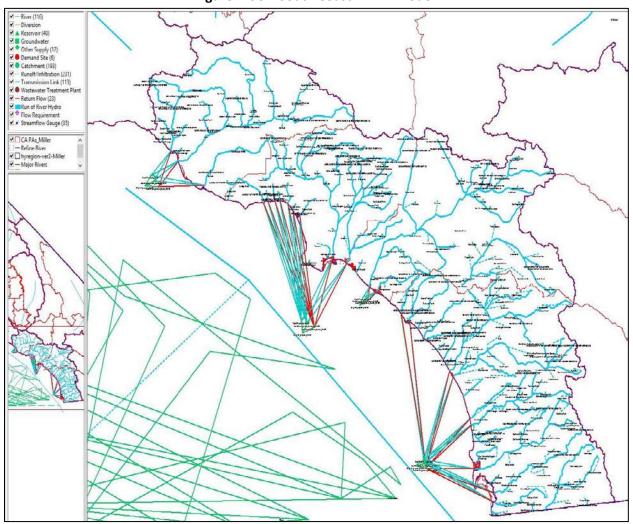
South Coast, PA 401, PA 402, PA 403, and PA 404 surface water and groundwater information (as defined in the Surface Water and Groundwater Information section) is provided in Table A-SC1.

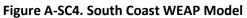
Table A-SC1. South Coast, PA 401, PA 402, PA 403, and PA 404 Surface Water and Groundwater Information

Geographical Region	Regional Imports (MAF)*	Regional Exports (MAF)	Groundwater Pumping (MAF)	Groundwater Natural Recharge (MAF)	Applied and Artificial Recharge (MAF)
South Coast HR	2.76	0.0	1.66	0.28	0.56
PA 401	0.3	0.0	-	-	-
PA 402	1.11	0.0	-	-	-
PA 403	0.78	0.0	-	-	-
PA 404	0.57	0.0	-	-	-

*Regional imports for the South Coast HR account for Colorado River, Los Angeles Aqueduct, and SWP imports.

WAFR Estimates


The following sections describe how the WAFR estimates were determined.


WEAP Model

The South Coast WEAP Model was developed using the procedures described in the <u>WEAP Model</u> <u>Methodology section</u> and described in more detail in the following sections.

Model Domain

The South Coast WEAP Model domain is shown in Figure A-SC4.

Streams/Rivers and Delineation of Watershed

The South Coast WEAP Model streams/rivers with corresponding Planning Area are shown in Table A-SC2.

PA401	PA402	PA403	PA404 River/S	Stream
Rivers/Streams	River/Stream	River/Stream		1
Santa Clara River	Malibu East	Carbon Creek	Temecula Creek	Wilson Creek
Bouquet Canyon	Quarry Canyon	Santa Ana River	Tucalotta Creek	Warm Springs Creek
Castaic Creek	Santa Monica	Plunge Creek	Murieta Creek	Santa Margarita River
Piru Creek	Rancho Palos Verdes	San Bernardino	Sandia Creek	De Luz Creek
Hopper Creek	Los Angeles River	Lytle Creek	Aliso Canyon Runoff	Las Pulgas Canyon
Sespe Creek	Aliso Canyon Wash	Chino Creek	Horno Canyon Runoff	San Onofre Canyon
Santa Paula Creek	Little Tujunga Creek	Lake Mathews	San Mateo Creek	Capistrano Beach Runoff
Red Mountain Drainage	Arroyo Seco	San Diego Creek	San Juan Creek	Arroyo Trabuco
Sexton Canyon Drainage	Santa Anita Creek	Bautista Creek	Aliso Creek	San Luis Rey River
Calleguas Creek	San Gabriel River	Bernasconi Pass	Caliente Creek	Buena Vista Creek
North Fork Matilija Creek	Walnut Creek	Coyote Creek	San Luis Rey River/Warner Springs	Keys Creek
Matilija Creek	Malibu West	Bear Creek	Moses Canyon	Pilgrim Creek
Ventura River	Malibu Creek	Mill Creek	Carlsbad Drainage	Santa Ysabel Creek
Coyote Creek	Topanga Creek	City Creek	Temascal Creek	Guejito Creek
Hammond Canyon	Sullivan Canyon	Cajon Creek	Santa Maria Creek	San Diegito River
	Ballona Creek	San Timoteo Canyon	Escondido Creek	San Diego River
	Dominguez Channel	Temescal Wash	Boulder Creek	San Vicente Creek
	Canoga Park	Santiago Creek	Los Penasquitos Creek	Unnamed Stream NR Carroll Canyon
	Pacoima Creek	Seal Beach Runoff	San Clemente Canyon	San Diego Drainage
	Big Tujunga Canyon	San Jacinto River	Sweetwater River	Dulzurra Creek
	Eaton Wash	Unnamed Stream	Otay River	Tijuana River
	San Gabriel River West Fork		South Otay Mountain Drainage	Pine Valley Creek
	Big Dalton Wash		Cottonwood Creek (to Mexico)	
	San Jose Creek		Campo Drainage (to Mexico)	

Watersheds in South Coast were delineated to determine the runoff from each stream using the procedures described in the <u>WEAP Model Methodology section</u>.

Reservoirs

Reservoirs included in the South Coast HR WEAP model with the corresponding Planning Areas are:

- Barrett Lake (Cottonwood Creek, PA404).
- Big Bear lake (Bear Creek, PA403).
- Big Tujunga Reservoir (Big Tujunga Canyon, PA402).
- Bouquet Reservoir (Bouquet Canyon, PA401).
- Canyon Lake (San Jacinto River, PA403).
- Castaic Lake (Castaic Creek, PA401).
- Cogswell Reservoir (San Gabriel River West Fork, PA402).
- Diamond Valley Lake (Warm Springs Creek, PA404).
- El Capitan Reservoir (San Diego River, PA404).
- Hansen Lake (Big Tujunga Canyon, PA402).
- Irvine Lake (Santiago Creek, PA403).
- Lake Casitas Reservoir (Coyote Creek, PA401).
- Lake Cuyamaca (Boulder Creek, PA404).
- Lake Elsinore (San Jacinto River, PA403).
- Lake Henshaw Reservoir (San Luis Rey River, PA404).
- Lake Hodges (Santa Ysabel Creek, PA404).
- Lake Mathews (near Temescal Wash, PA403).
- Lake Perris (Bernasconi Pass, PA403).
- Lake Piru (Piru Creek, PA401).
- Lake Skinner Reservoir (Tucalotta Creek, PA404).
- Lake Wohlford Reservoir (Escondido Creek, PA404).
- Loveland Reservoir (Sweetwater River, PA404).
- Lower Otay Reservoir (Dulzurra Creek, PA404).
- Miramar Reservoir (Near Carroll Canyon, PA404).
- Morena Reservoir (Cottonwood Creek, PA404).
- Morris Reservoir (San Gabriel River, PA402).
- Pacoima Reservoir (Pacoima Creek, PA402).
- Prado Reservoir (Santa Ana River, PA403).
- Puddingstone Dam (Walnut Creek, PA402).
- Pyramid Lake (Piru Creek, PA 401).

- San Gabriel Reservoir (San Gabriel River, PA402).
- San Vicente Reservoir (San Vicente Creek, PA404).
- Santa Fe Dam (San Gabriel River, PA402).
- Sepulveda Dam (Los Angeles River, PA402).
- Seven Oaks Reservoir (Santa Ana River, PA403).
- Sutherland Lake (Santa Ysabel Creek, PA404).
- Sweetwater Reservoir (Sweetwater River, PA404).
- Vail Lake (Temecula Creek, PA404).
- Villa Park Dam (Santiago Creek, PA403).
- Whittier Narrows (Santa Anita Creek, PA402).

Demands

The South Coast demands were determined using the procedures described in the <u>WEAP Model</u> <u>Methodology section</u> and described in the following sections.

Urban Indoor Demand

The Urban Indoor Annual Activity Level and Annual Water Use Rate for each Planning Area are shown in Table A-SC3.

	PA 4	01	PA 40	2	
Category	Annual Activity Level (person/household)	Annual Water Use Rate (TAF per person/household)	Annual Activity Level (person/household)	Annual Water Use Rate (TAF per person/household)	
Commercial	688874.37	.000036	4396940.00	.000036	
Industrial	64984.70	.000138	369506.053	.000138	
Multi-Family	150363.95	.000181	1134974.99	.000181	
Single-Family	250135.72	.000231	1888070.78	.000231	
	PA 4	03	PA 404		
Category	Annual Activity Level (person/household)	Annual Water Use Rate (TAF per person/household)	Annual Activity Level (person/household)	Annual Water Use Rate (TAF per person/household)	
Commercial	2980352.63	.000036	1678236.98	.000036	
Industrial	241047.91	.000138	107300.32	.000138	
Multi-Family	611241.71	.000181	522792.32	.000181	
Single-Family	1016822.07	.000231	869683.41	.000231	

Urban Outdoor Demand

The acres for each land use class by Planning Area are shown in Table A-SC4.

Land Use Class	PA 401 Acres	PA 402 Acres
Commercial	9,408	76,769
Multi-Family	4,969	32,526
Public	9,444	16,083
Single-Family	23,002	150,558
Total	46,823	275,936
Land Use Class	PA 403 Acres	PA 404 Acres
Commercial	40,179	29,379
Multi-Family	27,384	10,238
Public	58,346	32,154
Single-Family	126,758	47,391
Total	252,667	119,162

Table A-SC4. Urban Outdoor Land Use Class Acres

Agricultural Demand

The acres for each crop type by Planning Area are shown in Table A-SC5.

	PA 401 Acres	PA 402 Acres	PA 403 Acres	PA 404 Acres			
Сгор	(thousand)	(thousand)	(thousand)	(thousand)			
Grain	0.42	0	4.66	1.2			
Rice	0	0	0	0			
Cotton	0	0	0	0			
Sugar Beet	0	0	0	0			
Corn	0.83	0.02	0.83	0.25			
Dry Bean	0.45	0	0.68	0.18			
Safflower	0	0	0	0			
Other Field	0.22	0	1.14	0.06			
Alfalfa	0.27	0	5.33	0.26			
Pasture	2.47	0.11	6.09	2.86			
Processed Tomato	0.12	0	0	0.12			
Fresh Tomato	1.64	0	0.15	2.28			
Cucurbits	0.4	0	0.67	1.07			
Onion and Garlic	0.22	0	0.09	0.08			
Potato	0	0	1.28	0.39			
Other Truck	46.04	3.51	8.64	11.6			
Almond and Pistachio	0	0	0.01	0			

Table A-SC5. Crop acres by Crop Type

Other Deciduous	0.32	0	0.47	1.5
Sub-Tropical	58.09	0.25	13.13	48.52
Vine	0.04	0	0.77	2.49
Total	111.53	3.89	43.94	72.86

Calibration

The South Coast WEAP Model was calibrated using the procedures described in the <u>WEAP Model</u> <u>Methodology section</u>.

Calibration Data Collection

Calibrated Watersheds with corresponding gage information are shown in Table A-SC6.

	Site	Drainage Area	Gage Flow	Gage Flow
Gage Name	Number	(Square Miles)	Starting Date	Ending Date
NF MATILIJA C A				
MATILIJA HOT	11116000	15.6	12/31/1933	3/1/1983
SPRINGS CA				
MATILIJA C AB RES				
NR MATILIJA HOT	11114500	50.7	3/11/1949	1/25/1969
SPRINGS CA				
SANTA PAULA C NR	11113500	38.4	1/19/1933	3/1/2014
SANTA PAULA	11113500	38.4	1/19/1933	5/1/2014
SESPE C NR	11112000	252	1/10/1022	2/1/2014
FILLMORE	11113000	252	1/19/1933	3/1/2014
HOPPER CREEK NEAR				o // // 000
PIRU CA	11110500	23.6	12/31/1933	3/1/1983
SANTA CLARA R AB				
RR STATION NR LANG	11107745	157	2/6/1950	1/9/2005
CA				
CALLEGUAS C NR	11106550	248	2/25/1969	2/28/2014
CAMARILLO CA	11100550	240	2/23/1905	2/20/2014
BALLONA C NR	11103500	89.5	5/8/1928	2/10/1978
CULVER CITY CA	11103500	89.5	5/8/1928	2/10/1978
TOPANGA C NR	44404000	10	2/45/4022	2/27/4070
TOPANGA BCH CA	11104000	18	3/15/1930	3/27/1979
MALIBU C AT CRATER				
CAMP NR CALABASAS	11105500	105	2/4/1931	3/27/1979
CA				

Table A-SC6. Calibrated Gage Locations

ARROYO SECO NR PASADENA CA	11098000	16	2/20/1914	2/28/2014
SANTA ANITA C NR SIERRA MADRE CA	11100000	9.71	12/24/1916	2/28/1970
LITTLE TUJUNGA C NR SAN FERNANDO CA	11096500	21.1	1914-01	2/11/1973
BIG TUJUNGA C BL MILL C NR COLBY RANCH CA	11094000	64.9	4/29/1948	11/29/1970
EF SAN GABRIEL R NR CAMP BONITA CA	11080500	84.6	1/19/1933	3/27/1979
SAN JACINTO R NR SAN JACINTO	11069500	142	3/13/1921	9/7/2014
PLUNGE C NR EAST HIGHLANDS CA	11055500	16.9	3/15/1919	2/28/2014
CITY C NR HIGHLAND CA	11055800	19.6	3/22/1920	2/28/2014
CAJON C NR KEENBROOK CA	11063000	40.6	3/22/1920	3/1/1983
SAN ANTONIO C NR CLAREMONT CA	11073000	17.1	3/7/1918	12/24/1971
SAN DIEGO C AT CULVER DRIVE NR IRVINE CA	11048500	41.8	2/6/1950	11/24/1984
LAS FLORES C NR OCEANSIDE CA	11046100	26.6	1/16/1952	3/1/2014
SAN ONOFRE C A SAN ONOFRE CA	11046250	42.2	1947	1/21/2010
SAN MATEO C NR SAN CLEMENTE CA	11046300	80.8	1/7/1953	3/1/2014
SAN JUAN C NR SAN JUAN CAPISTRANO CA	11046500	106	3/10/1929	2/25/1969
ARROYO TRABUCO NR SAN JUAN CAPISTRANO CA	11047000	35.7	2/8/1932	1/29/1981

TEMECULA C NR AGUANGA CA	11042400	131	4/3/1958	3/1/2014
SANDIA C NR FALLBROOK CA	11044350	21.1	2/17/1990	5/14/2015
DE LUZ C NR DE LUZ CA	11044800	33	1/16/1993	12/4/2014
AGUA CALIENTE C NR WARNER SPRINGS CA	11031500	19	1961	3/7/1987
WF SAN LUIS REY R NR WARNER SPRINGS CA	11033000	25.5	2/19/1914	2/15/1986
SWEETWATER R NR DESCANSO CA	11015000	45.4	3/24/1906	3/1/2014
LOS PENASQUITOS C NR POWAY CA	11023340	42.1	4/8/1965	3/1/2014
GUEJITO C NR SAN PASQUAL CA	11027000	22.5	12/28/1946	2/28/2014
SANTA MARIA C NR RAMONA CA	11028500	57.6	2/21/1914	2/28/2014

Calibration Results

Calibrated Watersheds with corresponding NSE and PBIAS are shown in Table A-SC7.

Table A-SC7. Calibrated Watersheds with corresponding NSE and PBIAS						
Stream Gage Name and River Name	Nash Sutcliffe Coefficient of Efficiency (NSE)	Percent Bias (PBIAS)				
NF Matilija Creek @ Matilija	0.87	2.84				
Matilija @ Matilija Hot Springs	0.78	1.9				
Santa Paula Creek @ Santa Paula	0.84	3.59				
Sespe Creek @ Fillmore	0.89	1.28				
Hopper Creek @ Piru	0.81	10.71				
Stanta Clara River @ Lang	0.63	5.34				
Calleguas Creek @ Camarillo	0.88	0.34				
Ballona Creek @ Culver City	0.94	1.05				
Topanga Creek @ Topanga Beach	0.85	12.79				
Malibu Creek @ Crater Camp	0.69	13				
Arroyo Seco @ Pasadena	0.88	2.12				
Santa Anita Ck @ Sierra Madre	0.85	6.16				
Little Tujunga @ San Fernando	0.68	3.91				
San Gabriel River @ Camp Bonita	0.9	1.23				
Big Tujunga Canyon @ Colby Ranc	0.6	-4.37				
San Jacinto River @ San Jacinto	0.67	6.95				
Plunge Creek @ East Highlands	0.79	2.36				
City Creek @ Highland	0.78	7.12				
Cajon Creek @ Keenbrook	0.71	3.25				
San Antonio Creek @ Claremont	0.78	13.52				
San Diego Creek @ Culver Drive	0.78	6.67				
Las Flores Creek @ Oceanside	0.66	101.18				
San Onofre Canyon @ San Onofre	0.66	38.41				
San Mateo Creek @ San Clemente	0.79	8.42				
San Juan Ck @ San Juan Capistra	0.68	10.21				
Arroyo Trabuco @ San Juan Capis	0.65	4.18				
Temecula Creek @ Aguanga	0.71	11.21				
Sandia Creek @ Fallbrook	0.87	-12.22				
De Luz Creek @ De Luz	0.86	24.37				
Agua Caliente @ Warner Springs	0.85	12.1				
San Luis Rey River @ Warner Spr	0.83	-1.45				
Sweetwater River @ Descanso	0.81	7.82				
Los Penasquitos @ Poway	0.83	4.13				
Guejito Creek @ San Pasqual	0.68	13.86				
Santa Maria Creek @ Ramona	0.7	5.35				

 Table A-SC7. Calibrated Watersheds with corresponding NSE and PBIAS

WEAP Outflow

The WEAP outflow for South Coast HR, PA 401, PA 402, PA 403, and PA 404 is shown in Table A-SC8.

Geographical Region	Outflow (MAF)
South Coast HR	0.83*
PA 401	0.274*
PA 402	0.308*
PA 403	0.032*
PA 404	0.22*

Table A-SC8. South Coast HR, PA 401, PA 4	02, PA 403, and PA 404 WEAP Outflow
---	-------------------------------------

*The outflow simulated using the South Coast WEAP Model was considered outside a reasonable range as compared to the gage data therefore the outflow from the gage data was used.

WAFR Fraction

The following sections describe how the WAFR Fraction was determined for each Planning Area within the South Coast HR.

Gage Data

Gage data for the 13 major rivers and streams in the South Coast HR was compiled. In each river or stream, the most downstream gage was selected to account for water demands within the watershed and to develop a WAFR fraction that is applicable to regional outflow.

The total area of the gaged watersheds is 8,197 square miles of the 10,925 square mile region, approximately 75 percent of the HR. A summary of the stream gages used in this analysis is presented in Table A-SC9. A map showing the locations of the gages used, and their respective watersheds is shown in Figure A-SC5.

Table A-5C5. Wajor Rivers and Gages Osed in South Coast fix Analysis							
River/Stream	Location	USGS Gage Number	Area (square miles)				
Ventura River	Ventura	11118500	188				
Santa Clara River	Montalvo	11114000	1,594				
Malibu Creek	Crater	11105500	105				
Los Angeles River	Long Beach	11103000	827				
San Gabriel River	Los Alamitos	11088000	472				
Santa Ana River	Costa Mesa	11078100	1,701				
San Diego Creek	Irvine	11048500	42				
San Juan Creek	San Juan Capistrano	11046501	117				
San Mateo Creek	San Onofre	11046370	132				
San Luis Rey River	Oceanside	11042000	557				
San Dieguito River	Del Mar	11030500	338				
San Diego River	San Diego	11023000	429				
Tijuana River	Nestor	11013500	1,695				

Table A-SC9. Major Rivers and Gages Used in South Coast HR Analysis

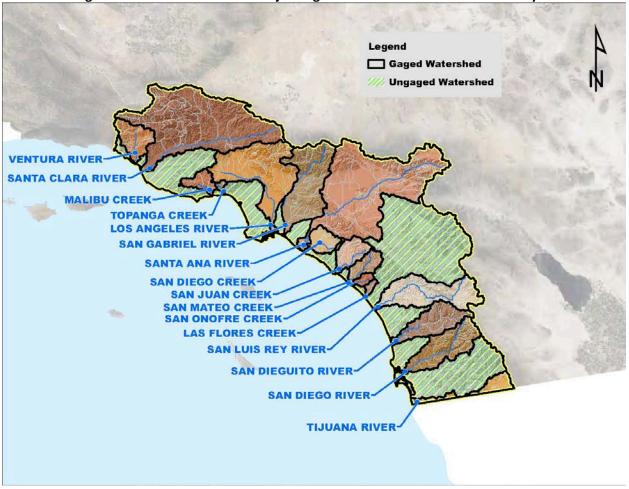


Figure A-SC5. Watersheds for Major Gaged Streams in South Coast HR Analysis

Once the available gage data was compiled, the period of available data for the 13 gages were compared. Data availability, by year, is presented in Figure A-SC6.

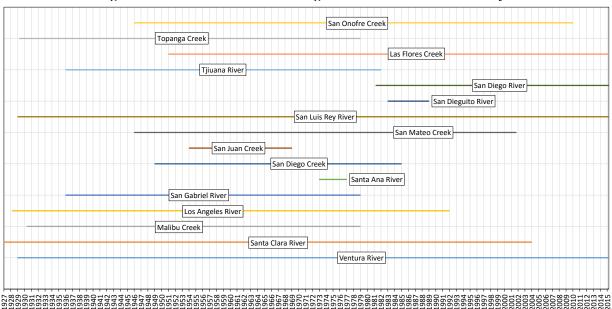


Figure A-SC6. Period of Available Gage Data in South Coast HR Analysis

The Santa Ana River and San Gabriel River are both designated as Fully Appropriated year-round and are excluded from the WAFR fraction calculations.

The gage data outflow, diverted water using Conceptual Project (WAFR), and WAFR Fraction (diverted water using Conceptual Project (WAFR)/Gage Data Outflow) for each stream and the South Coast Hydrologic Region is shown in Table A-SC10.

River/ Stream	Gage Data Outflow (TAF)*	Lower Se Range E	-	Best Estimate Upper Sensitiv Range Estima			-		
		WAFR (TAF)	WAFR Fraction (%)	WAFR (TAF)	WAFR Fraction (%)	WAFR (TAF)	Eraction	WAFR (TAF)	WAFR Fraction (%)
Ventura River	44.97	0.71	1.57%	1.99	4.43%	3.48	7.74%	36.96	82.19%
Santa Clara River	139.11	5.35	3.85%	9.92	7.13%	16.94	12.18%	138.20	99.35%
Malibu Creek	18.24	0.01	0.04%	0.02	0.13%	0.05	0.26%	14.96	81.98%
Los Angeles River	200.56	0.07	0.03%	0.30	0.15%	0.59	0.29%	164.76	82.15%
San Gabriel	33.61	0.00	0	0.00	0	0.00	0	0.00	0.00%
Santa Ana	4.94	0.00	0	0.00	0	0.00	0	0.00	0.00%
San Diego Creek	5.12	0.03	0.66%	0.09	1.76%	0.17	3.42%	3.16	61.75%
San Juan Creek	11.11	0.34	3.02%	0.84	7.59%	1.40	12.56%	8.82	79.39%
San Mateo Creek	4.09	0.00	0.00%	0.00	0.00%	0.00	0.00%	0.00	0.00%
San Luis Rey River	27.51	0.71	2.60%	2.04	7.42%	3.53	12.84%	22.35	81.24%
San Dieguito River	2.69	0.48	17.94%	0.91	33.92%	1.36	50.46%	2.39	88.75%
San Diego River	26.28	0.01	0.03%	0.02	0.09%	0.05	0.19%	20.20	76.86%
Tjiuana River	24.78	0.00	0.00%	0.00	0.01%	0.01	0.02%	23.47	94.71%
Las Flores Creek	1.20	0.00	0.00%	0.00	0.00%	0.00	0.00%	0.00	0.00%
Topanga Creek	4.35	0.00	0.00%	0.00	0.00%	0.00	0.00%	0.00	0.00%
San Onofre Creek	1.38	0.00	0.00%	0.00	0.00%	0.00	0.00%	0.00	0.00%
HR Total	549.93	7.71	1.42%	16.15	2.97%	27.57	5.08%	435.26	80.16%

Table A-SC10. WAFR Fraction

* Please note that the outflow is based on gaged streams only. The final WAFR estimates include outflow from both gaged and ungaged watersheds.

Final WAFR Estimates

The outflow estimate simulated using the WEAP model was then multiplied by the range of water available for replenishment fractions determined by the historical gage data to determine the estimated range of WAFR estimates within the hydrologic region. The array of estimates for the South Coast HR, PA 401 PA 402, PA 403, and PA 404 are shown in Table A-SC11 using the WEAP outflow from Table A-SC8 and water available for replenishment fractions from Table A-SC10 above.

Geographical Region	Gage Data Outflow (MAF)	No Project Estimate (TAF)	Lower Sensitivity Range Estimate (MAF, WAFR Fraction 1.40%)	Best Estimate (MAF, WAFR Fraction 2.94%)	Upper Sensitivity Range Estimate (MAF, WAFR Fraction 5.01%)	Maximum Project Estimate (MAF, WAFR Fraction 79.15%)
HR	0.83	0	0.012	0.024	0.042	0.660
PA 401	0.274	0	0.004	0.008	0.014	0.217
PA 402	0.308	0	0.004	0.009	0.015	0.244
PA 403	0.032	0	0.000	0.001	0.002	0.025
PA 404	0.22	0	0.003	0.006	0.011	0.174

Table A-SC11. Final WAFR Estimates

Potential Water Development by Other Methods (recycled water, desalination and water conservation)

Estimates of potential water development by other methods (recycled water, desalination and water conservation) are also shown for South Coast Hydrologic Region in Table A-SC12. Note that these estimates were not specifically made for use for groundwater replenishment and will need to be considered by GSAs more thoroughly for such purpose.

Method	Volume of Water Increase from 2010 to 2020
Recycle	0.10 MAF
Desalination	0.31 MAF
Conservation	0.24 MAF

Table A-SC12. South Coast Urban Water Portfolio Actions

Sacramento River Hydrologic Region

The <u>Sacramento River Hydrologic Region</u> includes the entire California drainage area of the Sacramento River (the state's largest river) and its tributaries. The region extends from Chipps Island in Solano County north to Goose Lake in Modoc County. It is bounded by the Sierra Nevada on the east, the Coast Ranges on the west, the Cascade and Trinity mountains on the north, and the Sacramento-San Joaquin Delta (Delta) on the south. The northernmost area, mainly high desert plateau, is characterized by cold, snowy winters with only moderate rainfall, and hot, dry summers. The mountainous parts in the north and east typically have cold, wet winters with large amounts of snow providing runoff for summer water supplies. The Sacramento Valley floor has mild winters with less precipitation and hot, dry summers. Overall annual precipitation in the region generally increases from south to north and west to east. The snow and rain that fall in this region contribute to the overall water supply for the entire state (<u>California Water Plan Update 2013</u>).

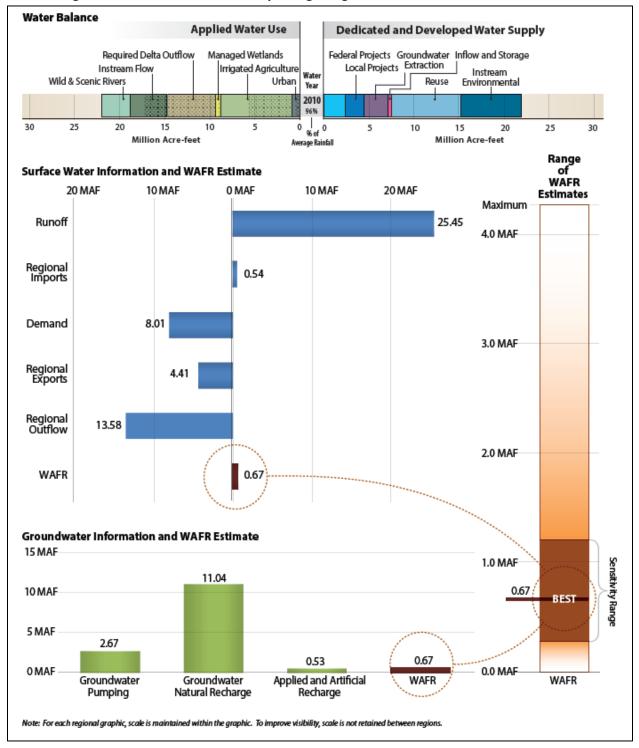

The Sacramento River HR is divided into 11 Planning Areas: PA 501, PA 502, PA 503, PA 504, PA 505, PA 506, PA 507, PA 508, PA 509, PA 510, and PA 511. The Sacramento River HR and its PA's are shown in Figure A-SR1.

Figure A-SR1. Sacramento River HR and Sacramento Planning Areas

Summary of WAFR Information and Estimates

WAFR information and estimates for Sacramento River Hydrologic Region and its Planning Areas are shown in Figures A-SR2 and A-SR3.

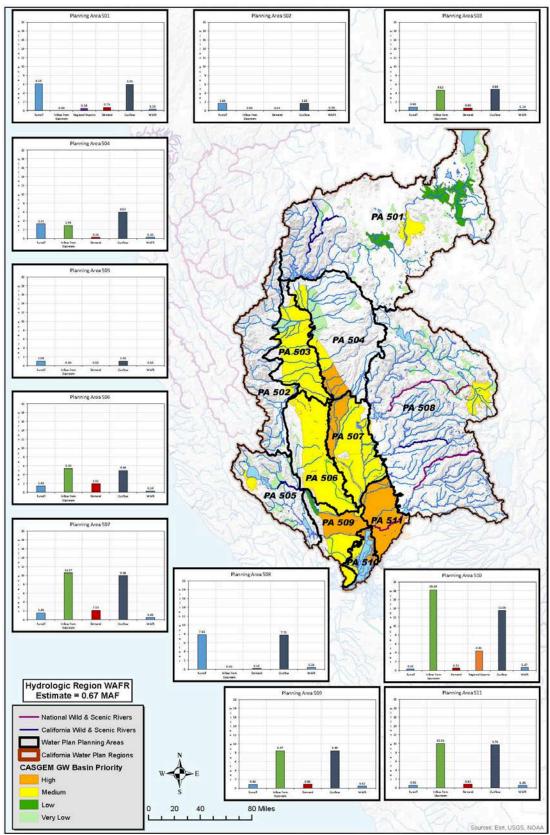


Figure A-SR3. Sacramento River HR Planning Area WAFR Information and Estimates

WAFR Information and Estimates

The major tributaries in the Sacramento River HR are the Sacramento River, Stoney Creek, Feather River, Yuba River, Bear River and American River.

Water is imported into the Sacramento River HR from the Trinity River through the Central Valley Project's Clear Creek Tunnel.

The WAFR information and estimates is provided in the following sections.

Surface Water and Groundwater Information

Sacramento River HR and its Planning Areas surface water and groundwater information (as defined in the Surface Water and Groundwater Information section) is shown in Table A-SR1.

Estimates of regional imports and exports are based on CalSim II modeling performed for the 2015 SWP Delivery Capability Report (DCR) for the existing conditions with historical hydrology.

Table A-SR1. Sacramento River HR and Sacramento Planning Area Surface Water and Groundwater Information

Geographical Region	Regional Imports (MAF)	Regional Exports (MAF)	Groundwater Pumping (MAF)	Groundwater Natural Recharge (MAF)	Applied and Artificial Recharge (MAF)
Sacramento River HR	0.54	4.41	2.67	11.04	0.53
	0.54	0.00	2.07	11.01	0.00
PA 501		0.00	-	-	-
PA 502	0.00	0.00	-	_	_
PA 302	0.00	0.00	-	-	-
PA 503	0.00	0.00	-	-	-
PA 504	0.00	0.00	-	-	-
PA 505	0.00	0.00	-	-	_
PA 506	0.00	0.00	-	-	-
PA 507	0.00	0.00	_	-	_
PA 508	0.00	0.00	-	_	-
PA 509	0.00	0.00	_	_	_
PA 510	0.00	4.41	_		
PA 511	0.00	0.00	-		-

WAFR Estimates

The following sections describe how the WAFR estimates were determined.

WEAP Model

The Central Valley Planning Area (CVPA) WEAP model, developed under the CA Water Plan, was used to determine the runoff, demand and outflow for the Sacramento River HR and its Planning Areas. The CVPA WEAP model does not calculate outflow by Planning Area so a mass balance/flow routing approach was developed to estimate the outflow from each Planning Area. An approximate mass balance was developed for each Planning Area that compared available surface water supplies (runoff, inflow from upstream PAs, and regional imports) with demands and regional exports. Remaining supply after subtracting demands and exports was assumed to be outflow from the PA. Outflow from each PA was routed through the HR, starting from the upstream PAs and moving downstream, to calculate inflow from upstream PAs available in downstream PAs. Outflow from several PAs flows into or is available to multiple downstream PAs. Outflow from mountain PAs such as PA 508 was apportioned to downstream PAs (see 503 and 504) flows into the Sacramento River and is available to downstream PAs and soft period of the river (see 506 and 507). In this case, it was assumed that each downstream PA had an equal share of outflow from the upstream PAs.

WEAP Outflow

The WEAP outflow for Sacramento River HR and its Planning Areas is shown in Table A-SR2.

Geographical Region	Outflow (MAF)
Sacramento River HR	13.58*
PA 501	5.95
PA 502	1.65
PA 503	4.84
PA 504	6.02
PA 505	1.03
PA 506	4.94
PA 507	9.94
PA 508	7.72
PA 509	8.44
PA 510	13.58
PA 511	9.70

Table A-SR2. Sacramento River HR and Sacramento Planning Area WEAP Outflow

*Please note the sum of the Planning Area outflow does not equal the hydrologic region outflow; since the Sacramento River flows through multiple Planning Areas, the outflow from an upstream Planning Area may be double counted in the outflow for a downstream Planning Area. For this reason, adding the outflow from all the Planning Areas will not equal the Sacramento River HR outflow.

WAFR Fraction

The following section describes how the WAFR fraction was determined for the Sacramento River HR. The approach for the Sacramento River and San Joaquin River HRs was similar to the gage data analysis applied to HRs outside of the Sacramento-San Joaquin Delta (Delta) watershed, but was modified to address the unique situation of the Delta. While Delta outflow is not gaged, an estimate of the daily average Delta outflow is available for an adequate period of record for analysis.

Estimated WAFR Fraction

DWR calculates and publishes the daily average Delta outflow as generated by Dayflow. Dayflow is a computer program designed to estimate daily average Delta outflow. The program uses daily river inflows, water exports, rainfall, and estimates of Delta agricultural depletions to estimate the "net" flow at the confluence of the Sacramento and San Joaquin rivers, nominally at Chipps Island. The Dayflow estimate of Delta outflow is referred to as the "net Delta outflow index".

Daily average Delta outflow is available for an 86-year period, from water year 1930 through 2015. The entire period was used in the analysis, and a sensitivity analysis was also performed for a more recent period after the construction of the CVP and SWP (WY 1975 through 2015). Delta outflow is the outflow from two hydrologic regions; the Sacramento River and San Joaquin River. Dayflow includes separate estimates of Delta inflow from each HR, and these estimates of Delta inflow were used to determine the approximate outflow from each HR.

Daily average Delta outflow from the Sacramento River HR was evaluated against a range of Conceptual Projects that varied in capacity and instream flow requirements. Analysis in the Delta also considered whether the Delta was likely to be in either a balanced or excess condition. Balanced conditions exist when it is agreed by the State Water Project (SWP) and the Central Valley Project (CVP) that releases from upstream reservoirs plus unregulated flow approximately equal the water supply needed to meet Sacramento Valley inbasin uses, plus exports. Excess conditions exist when upstream reservoir releases plus unregulated natural flow exceed Sacramento Valley inbasin uses, plus exports (SWRCB Water Right Decision 1641). An approximation of Delta conditions was developed through analysis of CalSim II model results from the 2015 SWP Delivery Capability Report for the existing conditions with historical hydrology and review of historical CVP records. CalSim II results were used to estimate periods when the Delta was likely to be in either balanced or excess conditions and these conditions were applied to the daily average Delta outflow.

Outflow from all Planning Areas in the Sacramento HR flows into the Delta; therefore, the WAFR fraction for each Planning Area must consider Delta conditions. WAFR fractions for all Planning Areas in the Sacramento River HR are the same and are based on the analysis performed at the Delta.

River/Stream	Gage Data	Lower Sensitivity Range Estimate		age Sensitivity Best Estimate Bange Esti			-		
River/Stream	Outflow (MAF)	WAFR (MAF)	WAFR Fraction (%)	WAF R (MAF)	WAFR Fractio n (%)	WAFR (MAF)	WAFR Fraction (%)	WAFR (MAF)	WAFR Fraction (%)
Sacramento River HR	15.94	0.32	2.01%	0.79	4.93%	1.42	8.88%	5.02	31.46%

Table A-SR3. WAFR Fraction

Final WAFR Estimates

The outflow estimate simulated using the WEAP model was then multiplied by the range of water available for replenishment fractions determined by the Dayflow data to determine the estimated range of WAFR estimates within the hydrologic region. The array of estimates for the Sacramento River HR and its Planning Areas are shown in Table A-SR4 using the WEAP outflow from Table A-SR2 and water available for replenishment fractions from Table A-SR3 above.

Geographical Region	WEAP Outflow (MAF)	No Project Estimate (MAF)	Lower Sensitivity Range Estimate (MAF, WAFR Fraction 2.01%)	Best Estimate (MAF, WAFR Fraction 4.93%)	Upper Sensitivity Range Estimate (MAF, WAFR Fraction 8.88%)	Maximum Project Estimate (MAF, WAFR Fraction 31.46%)
Sacramento						
River HR*	13.58	0	0.27	0.67	1.21	4.27
PA 501	5.95	0	0.12	0.29	0.53	1.87
PA 502	1.65	0	0.03	0.08	0.15	0.52
PA 503	4.84	0	0.10	0.24	0.43	1.52
PA 504	6.02	0	0.12	0.30	0.53	1.89
PA 505	1.03	0	0.02	0.05	0.09	0.32
PA 506	4.94	0	0.10	0.24	0.44	1.56
PA 507	9.94	0	0.20	0.49	0.88	3.13
PA 508	7.72	0	0.16	0.38	0.69	2.43
PA 509	8.44	0	0.17	0.42	0.75	2.66
PA 510	13.58	0	0.27	0.67	1.21	4.27
PA 511	9.70	0	0.20	0.48	0.86	3.05

Table A-SR4. Final WAFR Estimates

*Please note the sum of the Planning Area outflow does not equal the hydrologic region outflow; since the Sacramento River flows through multiple Planning Areas, the outflow from an upstream Planning Area may be double counted in the outflow for a downstream Planning Area. For this reason, adding the outflow from all the Planning Areas will not equal the Sacramento River HR outflow. Also, for this same reason, adding the WAFR from all the Planning Areas will not equal the Sacramento River HR WAFR.

Potential Water Development by Other Methods (recycled water, desalination and water conservation)

Estimates of potential water development by other methods (recycled water, desalination and water conservation) are also shown for the Sacramento River HR in Table A-SR5. Note that these estimates were not specifically made for use as groundwater replenishment and will need to be considered by GSAs more thoroughly for such purpose.

Method	Volume of Water Increase from 2010 to 2020
Recycle	0.02 maf*
Desalination	0 maf*
Conservation	0.13 maf*

*maf - million acre-feet

Example: Sacramento Valley Sensitivity Example

DWR has been following an observed technical uncertainty related to precipitation and streamflow in the Sacramento River watershed for several decades. Specifically, an analysis of the relationship between precipitation and streamflow for the Sacramento River indicates that the relationship has changed since 1950.

Figure A-SR4 shows the double mass plot relationship of the Sacramento River and watershed from 1950 to 2015. The bottom "x-axis" represents the cumulative annual North Sierra precipitation from DWR's 8 station index. The "y-axis" represents the cumulative annual flow accretion during the months of April to September. River accretion is the volume of water gained in-between two specific locations in a river reach². And the top "x-axis" shows a rough estimation of the water year.

The theory of the double-mass plot is that a graph of the cumulative of one variable (in this case, annual accretion during the months April to September) against the cumulative of another variable (in this case, annual precipitation) during the same period will plot as a straight line so long as the data are proportional; the slope of the line will represent the constant of proportionality between the variables. A break in the slope of the double-mass plot indicates that a change in the constant of proportionality (ratio) between the two variables has occurred or perhaps that the proportionality is not a constant at all rates of accumulation. If the proportionality constant does not vary, then a break in the slope

² The Sacramento River accretion was calculated by taking the difference of the Sacramento River flows leaving the Sacramento Basin (flows at Freeport, Fremont Weir, and Sacramento Weir) and entering the Sacramento Valley (Keswick Dam, Feather River below Oroville Dam and Thermalito Afterbay, and Nimbus Dam).

Water Available for Replenishment Information and Estimates

indicates the time at which a change occurs in the ratio. The difference in the slope of the lines on either side of the break in the slope indicates the degree of change in the ratio, i.e., proportionality constant³.

In Figure A-SR4, several observations can be made:

- The ratio between the two variables decreased when comparing the 1950's trend (1950-1960) and the 1990-2015 trend.
- The multi-year drought water years, 1976-1977, 1987-1992, 2007-2009, and 2012-2015 had negative ratios, which depleted the river flows. For example, water years from 1987 to 1992 significantly depleted the river flow and the depletion effect is easily observed.

The change in trend and decrease in streamflow associated with precipitation indicates a fundamental change for the streamflow of the watershed. Several complex, and sometimes interdependent, factors may contribute to this observed effect.

- Increased diversion from the tributaries and Sacramento River for water uses.
- Increased groundwater withdrawal, including effects on the hydraulic connection between surface water and groundwater.
- Climate change effects to stream hydrologies, including more rain and less snow, as well as increased evaporation effects.
- Increase in frequency and severity of drought periods.

³ Searcy, T. K.; Hardison, C.H. 1960: Double-mass Curves. U.S. Geological Survey Water-Supply Paper 1541-B. USGS, Washington. 66 p. <u>http://pubs.usgs.gov/wsp/1541b/report.pdf</u>

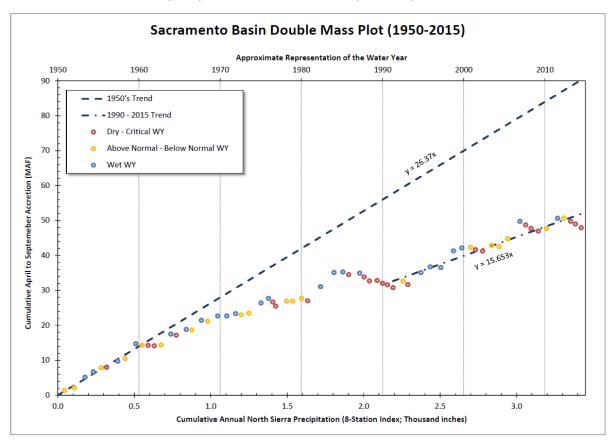


Figure A-SR4. Sacramento Basin double mass plot between the cumulative annual North Sierra precipitation and cumulative April to September Accretion

While there is uncertainty regarding the relative importance of these factors associated with the observed changes in the Sacramento River, changes have occurred. A fundamental challenge associated with sustainable groundwater management and water available for replenishment is to better understand how physical or natural changes can influence the hydraulic connection between groundwater and surface water. In particular, understanding the inter-dependent functionality between groundwater and surface water will assist the development of best management practices at local, regional, and statewide levels, and will also affect opportunities to develop water available for replenishment.

San Joaquin Hydrologic Region

The <u>San Joaquin River Hydrologic Region</u> is in California's great Central Valley and is generally the northern portion of the San Joaquin Valley. The region is south of the Sacramento River Hydrologic Region and north of the Tulare Lake Hydrologic Region. The region includes approximately half of the Sacramento-San Joaquin Delta (Delta). The San Joaquin HR is bordered on the east by the Sierra Nevada and on the west by the coastal mountains of the Diablo Range. This region experiences a wide range of precipitation that varies from low rainfall amounts on the valley floor to extensive snowfall in the higher elevations of the Sierra Nevada. The snow that remains after winter serves as stored water before it melts in the spring and summer. The average annual precipitation of several Sierra Nevada stations is about 35 inches. Snowmelt from the mountains is a major contributor to local eastern San Joaquin Valley water supplies (<u>California Water Plan Update 2013</u>).

The San Joaquin River HR is divided into 10 Planning Areas: PA 601, PA 602, PA 603, PA 604, PA 605, PA 606, PA 607, PA 608, PA 609, and PA 610. The San Joaquin River HR and its PA's are shown in Figure A-SR1.

Figure A-SR1. San Joaquin River HR and San Joaquin Planning Areas

Summary of WAFR Information and Estimates

WAFR information and estimates for San Joaquin River Hydrologic Region and its Planning Areas are shown in Figures A-SJ2 and A-SJ3.

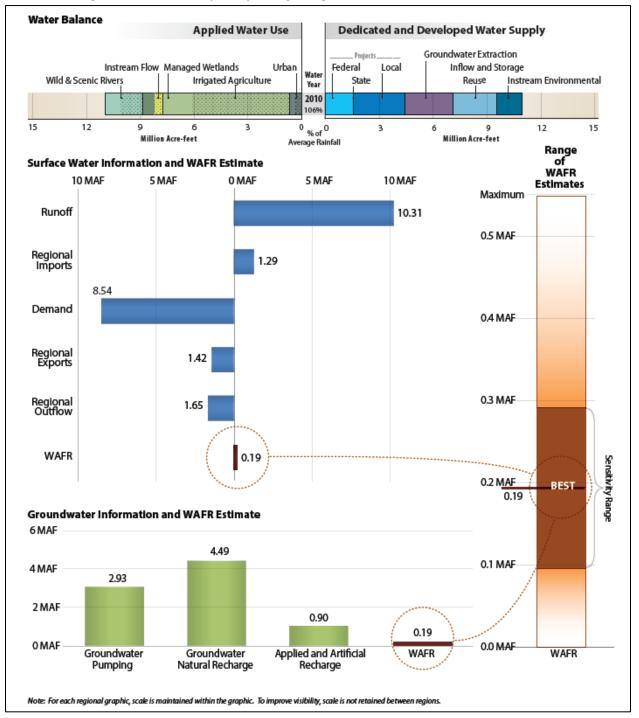


Figure A-SJ2. San Joaquin Hydrologic Region WAFR Information and Estimates

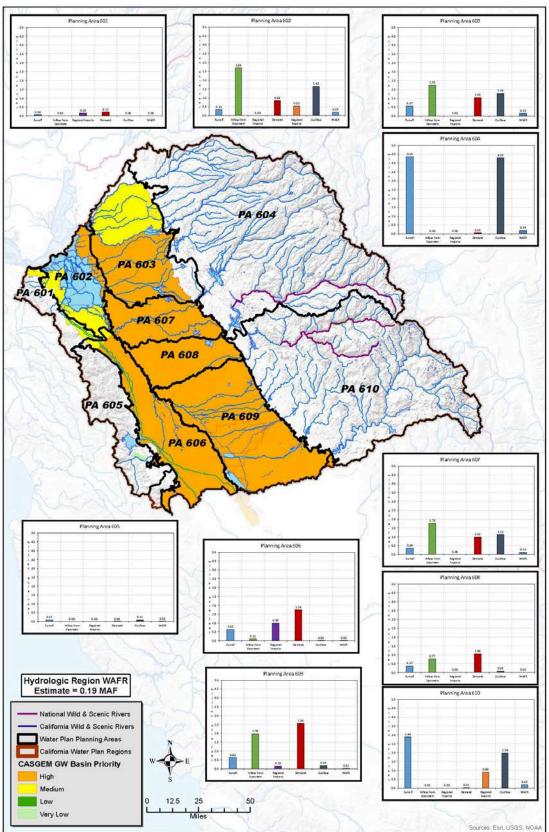


Figure A-SJ3. San Joaquin Planning Area WAFR Information and Estimates

WAFR Information and Estimates

The major tributaries in the San Joaquin River HR are the San Joaquin River, Mokelumne River, Calaveras River, Consumes River, Stanislaus River, Tuolumne River, Merced River, Chowchilla River and Fresno River.

Water is imported into the San Joaquin River HR from the Sacramento River HR and exported into the Tulare Lake, Central Coast, and South Coast HRs.

The WAFR information and estimates are provided in the following sections.

Surface Water and Groundwater Information

San Joaquin River HR and its Planning Area surface water and groundwater information (as defined in the Surface Water and Groundwater Information section) is shown in Table A-SJ1.

Estimates of regional imports and exports are based on CalSim II modeling performed for the 2015 SWP Delivery Capability Report for the existing conditions with historical hydrology. Exports from the San Joaquin River HR include Friant Kern Canal and the combined CVP and SWP exports from the Delta. Regional imports to individual PAs are based on the types of CVP and SWP contracts and the volume of contract supply held by individual contractors within the PA.

momation						
Geographical Region	Regional Imports (MAF)	Regional Exports (MAF)	Groundwater Pumping (MAF)	Groundwater Natural Recharge (MAF)	Applied and Artificial Recharge (MAF)	
San Joaquin						
River HR	1.29	1.42	2.93	4.49	0.90	
PA 601	0.16	0.00	-	-	-	
PA 602	0.00	0.53	-	-	-	
PA 603	0.00	0.00	-	-	-	
PA 604	0.00	0.00	-	-	-	
PA 605	0.00	0.00	-	-	-	
PA 606	0.99	0.00	-	-	-	
PA 607	0.00	0.00	-	-	-	
PA 608	0.00	0.00	-	-	-	
PA 609	0.15	0.00	-	-	-	
PA 610	0.00	0.89	-	-	-	

Table A-SJ1. San Joaquin River HR and San Joaquin Planning Area Surface Water and Groundwater Information

WAFR Estimates

The following sections describe how the WAFR estimates were determined.

WEAP Model

The Central Valley Planning Area (CVPA) WEAP model, developed under the CA Water Plan, was used to determine the runoff, demand and outflow for the San Joaquin River HR and its Planning Areas. The CVPA WEAP model does not calculate outflow by Planning Area so a mass balance/flow routing approach was developed to estimate the outflow from each Planning Area. An approximate mass balance was developed for each Planning Area that compared available surface water supplies (runoff, inflow from upstream PAs, and regional imports) with demands and regional exports. Remaining supply after subtracting demands and exports was assumed to be outflow from the PA. Outflow from each PA was routed through the HR, starting from the upstream PAs and moving downstream, to calculate inflow from upstream PAs available in downstream PAs. Outflow from several PAs flows into or is available to multiple downstream PAs. Outflow from the mountain PAs such as 604 and 610 was apportioned to downstream PAs 603, 607, 608, and 609 based on watershed area that drains to each downstream PA.

WEAP Outflow

The WEAP outflow for San Joaquin River HR and its Planning Areas is shown in Table A-SR2.

Geographical Region	Outflow (MAF)
San Joaquin River HR*	1.65*
PA 601	0.00
PA 602	1.65
PA 603	1.28
PA 604	4.29
PA 605	0.11
PA 606	0.00
PA 607	1.13
PA 608	0.09
PA 609	0.19
PA 610	1.98

Table A-SJ2. San Joaquin River HR and San Joaquin Planning Area WEAP Outflow

*Please note the sum of the Planning Area outflow does not equal the hydrologic region outflow; since the San Joaquin River flows through multiple Planning Areas, the outflow from an upstream Planning Area may be double counted in the outflow for a downstream Planning Area. For this reason, adding the outflow from all the Planning Areas will not equal the San Joaquin River HR outflow.

WAFR Fraction

The following section describes how the WAFR Fraction was determined for the San Joaquin River HR. The approach for the Sacramento River and San Joaquin River hydraulic regions was similar to the gage data analysis applied to HRs outside of the Delta watershed, but was modified to address the unique situation of the Delta. While Delta outflow is not gaged, an estimate of the daily average Delta outflow is available for an adequate period of record for analysis.

Estimated WAFR Fraction

The Department calculates and publishes the daily average Delta outflow as generated by Dayflow. Dayflow is a computer program designed to estimate daily average Delta outflow. The program uses daily river inflows, water exports, rainfall, and estimates of Delta agricultural depletions to estimate the "net" flow at the confluence of the Sacramento and San Joaquin rivers, nominally at Chipps Island. The Dayflow estimate of Delta outflow is referred to as the "net Delta outflow index."

Daily average Delta outflow is available for an 86-year period, from water year 1930 through 2015. The entire period was used in the analysis, and a sensitivity analysis was also performed for a more recent period after the construction of the CVP and SWP (WY 1975 through 2015). Delta outflow is the outflow from two hydrologic regions, the Sacramento River and San Joaquin River. Dayflow includes separate estimates of Delta inflow from each HR, and these estimates of Delta inflow were used to determine the approximate outflow from each HR.

Daily average Delta outflow from the San Joaquin River HR was evaluated against a range of Conceptual Projects that varied in capacity and instream flow requirements. Analysis in the Delta also considered whether the Delta was likely to be in either a balanced or excess condition. Balanced conditions in the Delta indicate that all Delta inflow and outflow is meeting current demands and there is no WAFR estimates. An approximation of Delta conditions was developed through analysis of CalSim II model results from the 2015 SWP Delivery Capability Report for the existing conditions with historical hydrology and review of historical CVP records. CalSim II results were used to estimate periods when the Delta was likely to be in either balanced or excess conditions and these conditions were applied to the daily average Delta outflow.

Outflow from all Planning Areas in the San Joaquin HR flows into the Delta; therefore, the WAFR fraction for each Planning Area must consider Delta conditions. WAFR fractions for all Planning Areas in the San Joaquin River HR are the same and are based on the analysis performed at the Delta.

Discon (Change	Gage Data		ensitivity Estimate	Best Estimate		stimate Upper Sensitivity Range Estimate		Maximum Project Estimate	
River/Strea m	Outflow (MAF)	WAFR (MAF)	WAFR Fraction (%)	WAFR (MAF)	WAFR Fraction (%)	WAFR (MAF)	WAFR Fraction (%)	WAFR (MAF)	WAFR Fraction (%)
San Joaquin River HR	3.66	0.21	5.81%	0.43	11.82%	0.65	17.68%	1.22	33.40%

Table A-SJ3. WAFR Fraction

Initial WAFR estimates for mountain Planning Areas 602 and 604 were developed by applying the WAFR fraction. However, for these Planning Areas this resulted in an unrealistically high WAFR considering that much of the outflow goes to meet demand in other Planning Areas under contracts and water rights. In these instances, WAFR was adjusted to not exceed the WAFR from the entire San Joaquin River HR.

Final WAFR Estimates

The outflow estimate simulated using the WEAP model was then multiplied by the range of water available for replenishment fractions determined by the Dayflow data to determine the estimated range of WAFR estimates within the hydrologic region. The array of estimates for the San Joaquin River HR and its Planning Areas are shown in Table A-SJ4 using the WEAP outflow from Table A-SJ2 and water available for replenishment fractions from Table A-SJ3 above.

Geographical Region	WEAP Outflow (MAF)	No Project Estimate (MAF)	Lower Sensitivity Range Estimate (MAF, WAFR Fraction 5.81%)	Best Estimate (MAF, WAFR Fraction 11.82%)	Upper Sensitivity Range Estimate (MAF, WAFR Fraction 17.68%)	Maximum Project Estimate (MAF, WAFR Fraction 33.40%)
San Joaquin						
River HR*	1.65*	0	0.10	0.19	0.29	0.55
PA 601	0.00	0	0.00	0.00	0.00	0.00
PA 602	1.65	0	0.10	0.19	0.29	0.55
PA 603	1.28	0	0.07	0.15	0.23	0.43
PA 604	4.29	0	0.10	0.19	0.29	0.55
PA 605	0.11	0	0.01	0.01	0.02	0.04
PA 606	0.00	0	0.00	0.00	0.00	0.00
PA 607	1.13	0	0.07	0.13	0.20	0.38
PA 608	0.09	0	0.00	0.01	0.02	0.03
PA 609	0.19	0	0.01	0.02	0.03	0.06
PA 610	1.98	0	0.10	0.19	0.2	0.55

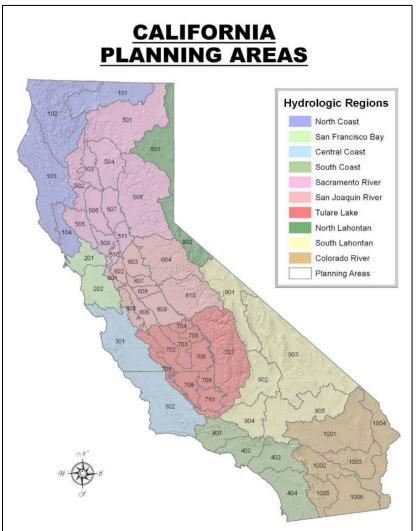
Table A-SJ4. Final WAFR Estimates

*Please note the sum of the Planning Area outflow does not equal the hydrologic region outflow; since the San Joaquin River flows through multiple Planning Areas, the outflow from an upstream Planning Area may be double counted in the outflow for a downstream Planning Area. For this reason, adding the outflow from all the Planning Areas will not equal the San Joaquin River HR outflow. Also, for this same reason, adding the WAFR from all the Planning Areas will not equal the San Joaquin River HR WAFR.

Potential Water Development by Other Methods (recycled water, desalination and water conservation)

Estimates of potential water development by other methods (recycled water, desalination, and water conservation) are also shown for San Joaquin River HR in Table A-SJ5. Note that these estimates were not specifically made for use as groundwater replenishment and will need to be considered by GSAs more thoroughly for such purpose.

Method	Volume of Water Increase from 2010 to 2020
Recycle	0.03 maf*
Desalination	0 maf*
Conservation	0.11 maf*


Table A-SJ5. San Joaquin River HR Urban Water Portfolio Actions

*maf - million acre-feet

Tulare Lake Hydrologic Region

The <u>Tulare Lake Hydrologic Region</u> covers approximately 10.9 million acres (17,050 square miles) and includes all of Kings and Tulare counties and most of Fresno and Kern counties. The San Joaquin Valley is divided into the San Joaquin River and the Tulare Lake regions by the San Joaquin River with the Tulare Lake region in the southern portion. Historically, the valley floor in this region had been a complex series of interconnecting natural sloughs, canals, and marshes. The Tulare Lake region is one of the nation's leading agricultural production areas, growing a wide variety of crops on about 3 million irrigated acres. The Sierra Nevada receives most of the precipitation in the Tulare Lake region in the form of rain and snow. The Sierra Nevada is the principal source of water for the foothills and the valley floor (<u>California</u> <u>Water Plan Update 2013</u>).

The Tulare Lake HR is divided into 10 Planning Areas: PA 701, PA 702, PA 703, PA 704, PA 705, PA 706, PA 707, PA 708, PA 709, and PA 710. The Tulare Lake HR and its PA's are shown in Figure A-TL1.

Summary of WAFR Information and Estimates

WAFR information and estimates for the Tulare Lake Hydrologic Region and its Planning Areas are shown in Figures A-TL2 and A-TL3.

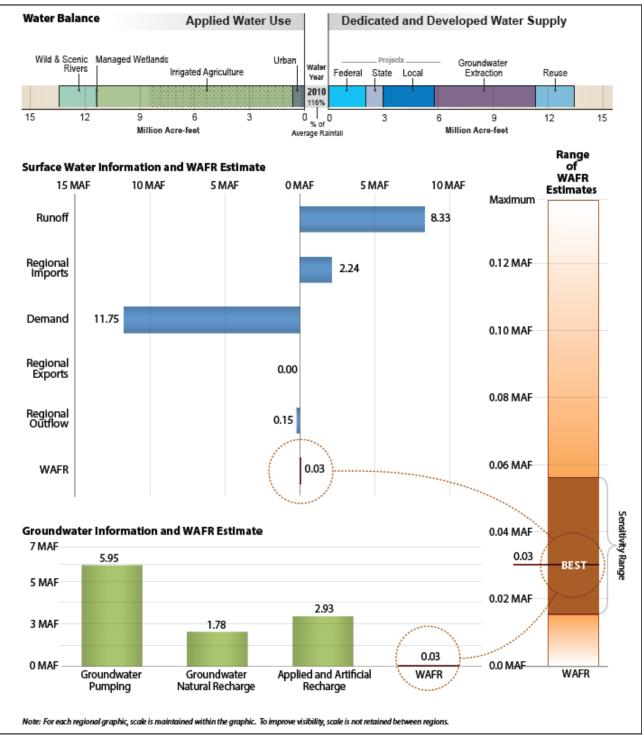


Figure A-TL2. Tulare Lake Hydrologic Region WAFR Information and Estimates

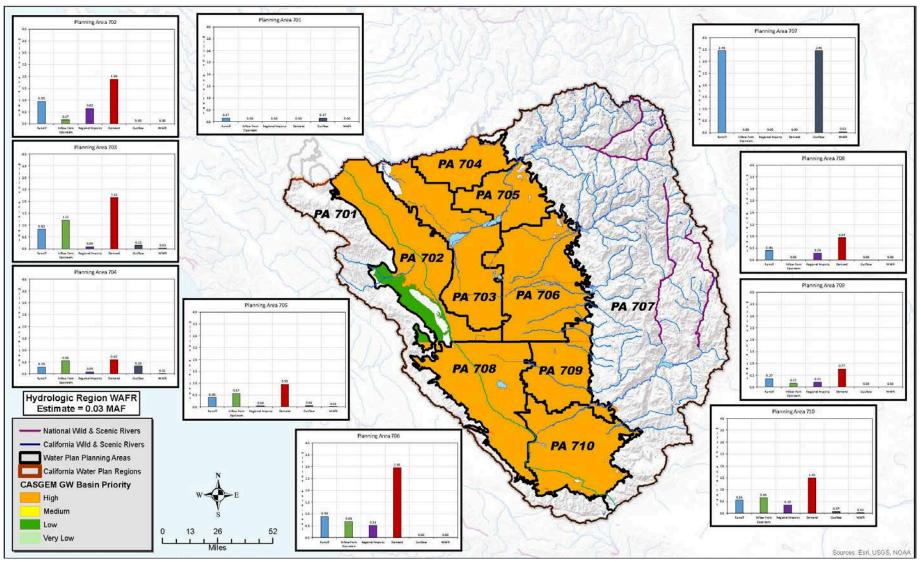


Figure A-TL3. Tulare Lake Planning Areas WAFR Information and Estimates

WAFR Information and Estimates

The major tributaries in the Tulare Lake HR are the Kings River, Kaweah River, Tule River and Kern River.

Water is imported into the Tulare Lake HR from the Sacramento and San Joaquin hydrologic regions.

The WAFR information and estimates are provided in the following sections.

Surface Water and Groundwater Information

Tulare Lake HR and its Planning Areas surface water and groundwater information (as defined in the Surface Water and Groundwater Information section) is shown in Table A-TL1.

Estimates of regional imports and exports are based on CalSim II modeling performed for the 2015 SWP Delivery Capability Report for the existing conditions with historical hydrology. Imports to the Tulare Lake HR include the Friant Kern Canal and CVP and SWP exports from the Delta. Regional imports to individual PAs are based on the types of CVP and SWP contracts and the volume of contract supply held by individual contractors within the PA.

Geographical Region	Regional Imports (MAF)	Regional Exports (MAF)	Groundwater Pumping (MAF)	Groundwater Natural Recharge (MAF)	Applied and Artificial Recharge (MAF)
Tulare Lake					
HR	2.24	0.00	5.95	1.78	2.93
PA 701	0.00	0.00	-	-	-
PA 702	0.65	0.00	-	-	-
PA 703	0.09	0.00	-	-	-
PA 704	0.09	0.00	-	-	-
PA 705	0.04	0.00	-	-	-
PA 706	0.53	0.00	-	-	-
PA 707	0.00	0.00	-	-	-
PA 708	0.29	0.00	-	-	-
PA 709	0.21	0.00	-	-	-
PA 710	0.35	0.00	-	-	-

Table A-TL1. Tulare Lake HR and Tulare Area Surface Water and Groundwater Information

WAFR Estimates

The following sections describe how the WAFR estimates were determined.

WEAP Model

The Central Valley Planning Area (CVPA) WEAP model, developed under the CA Water Plan, was used to determine the runoff, demand and outflow for the Tulare Lake HR and its Planning Areas. The CVPA

Water Available for Replenishment Information and Estimates

WEAP model does not calculate outflow by Planning Area so a mass balance/flow routing approach was developed to estimate the outflow from each Planning Area. An approximate mass balance was developed for each Planning Area that compared available surface water supplies (runoff, inflow from upstream PAs, and regional imports) with demands and regional exports. Remaining water supply after subtracting demands and exports was assumed to be outflow from the PA. Outflow from each PA was routed through the HR, starting from the upstream PAs and moving downstream, to calculate inflow from upstream PAs available in downstream PAs. Outflow from several PAs flows into or is available to multiple downstream PAs. Outflow from PA 707 was apportioned to downstream PAs based on watershed area and within the Kings River area by the supply available to Kings River Water Association member agencies.

WEAP Outflow

The WEAP outflow for Tulare Lake HR and its Planning Areas is shown in Table A-TL2.

Geographical Region	Outflow (MAF)
Tulare Lake HR*	0.15*
PA 701	0.17
PA 702	0.00
PA 703	0.15
PA 704	0.33
PA 705	0.06
PA 706	0.00
PA 707	3.46
PA 708	0.00
PA 709	0.00
PA 710	0.07

Table A-TL2. Tulare Lake HR and Tulare Planning Area WEAP Outflow

*Please note the sum of the Planning Area outflow does not equal the hydrologic region outflow; since major rivers flow through multiple Planning Areas, the outflow from an upstream Planning Area may be double counted in the outflow for a downstream Planning Area. For this reason, adding the outflow from all the Planning Areas will not equal the Tulare Lake HR outflow.

WAFR Fraction

The Tulare Lake HR is nearly a closed basin with the majority of the Tulare Lake HR draining to the historic Tulare Lake bed. The single outflow location is the James Bypass that connects the North Fork of the Kings River with the Mendota Pool on the San Joaquin River. Water typically only leaves the Tulare Lake HR through the James Bypass when flood control releases from Pine Flat Dam exceed demands, or when there are high, unregulated natural discharges from Mill and Hughes creeks. In very rare circumstances, surplus Kern River flow can be diverted into the California Aqueduct, but due to the rare occurrence it is not considered within this report.

Gage Data

An analysis of USGS gage records for the James Bypass (11253500) was performed to estimate the fraction of WAFR estimates. USGS gage records are available for a period of 62 years, from water year 1948 through 2009. Daily gage records were analyzed with a range of Conceptual Project capacities and instream flow requirements.

River/Stream Outflow (TAF)	•	Lower Sensitivity Range Estimate		Best Estimate		Upper Sensitivity Range Estimate		Maximum Project Estimate	
	Outflow (TAF)	WAFR (TAF)	WAFR Fraction (%)	WAF R (TAF)	WAFR Fractio n (%)	WAFR (TAF)	WAFR Fraction (%)	WAFR (MAF)	WAFR Fraction (%)
Tulare Lake HR	222	25	10.68%	47	21.1%	86	38.81%	213	95.73%

Initial WAFR estimates for individual Planning Areas within the Tulare Lake HR were developed by applying the WAFR fraction. However, for some Planning Areas this resulted in an unrealistically high WAFR considering that much of the outflow from some Planning Areas meets demand in other Planning Areas under contracts and water rights. In these instances, WAFR from some Planning Areas was adjusted to not exceed the WAFR from the entire HR.

Final WAFR Estimates

The outflow estimate simulated using the WEAP model was then multiplied by the range of water available for replenishment fractions using the James Bypass gage data to determine the estimated range of WAFR estimates within the hydrologic region. The array of estimates for the Tulare Lake HR and its Planning Areas are shown in Table A-TL4 using the WEAP outflow from Table A-TL2 and water available for replenishment fractions from Table A-TL3 above.

Geographical Region	WEAP Outflow (MAF)	No Project Estimate (MAF)	Lower Sensitivity Range Estimate (MAF, WAFR Fraction 10.68%)	Best Estimate (MAF, WAFR Fraction 21.10%)	Upper Sensitivity Range Estimate (MAF, WAFR Fraction 38.81%)	Maximum Project Estimate (MAF, WAFR Fraction 95.73%)
Tulare Lake						
HR*	0.15	0	0.02	0.03	0.06	0.14
PA 701	0.17	0	0.00	0.00	0.00	0.00
PA 702	0.00	0	0.00	0.00	0.00	0.00
PA 703	0.15	0	0.02	0.03	0.06	0.14
PA 704	0.33	0	0.01	0.02	0.03	0.08
PA 705	0.06	0	0.01	0.01	0.02	0.06
PA 706	0.00	0	0.00	0.00	0.00	0.00
PA 707	3.46	0	0.02	0.03	0.06	0.14
PA 708	0.00	0	0.00	0.00	0.00	0.00
PA 709	0.00	0	0.00	0.00	0.00	0.00
PA 710	0.07	0	0.01	0.02	0.03	0.07

Table A-TL4. Final WAFR Estimates

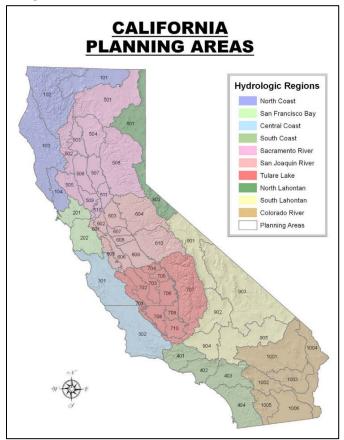
*Please note the sum of the Planning Area outflow does not equal the hydrologic region outflow; since major rivers flow through multiple Planning Areas, the outflow from an upstream Planning Area may be double counted in the outflow for a downstream Planning Area. For this reason, adding the outflow from all the Planning Areas will not equal the Tulare lake HR outflow. Also, for this same reason, adding the WAFR from all the Planning Areas will not equal the Tulare Lake HR WAFR.

Potential Water Development by Other Methods (recycled water, desalination and water conservation)

Estimates of potential water development by other methods (recycled water, desalination and water conservation) are also shown for Tulare Lake hydrologic region in Table A-TL5. Note that these estimates were not specifically made for use for groundwater replenishment and will need to be considered by GSAs more thoroughly for such purpose.

Method	Volume of Water Increase from 2010 to 2020		
Recycle	0.01 maf*		
Desalination	0 maf*		
Conservation	0.05 maf*		

Table A-TL5. Tulare Lake HR Urban Water Portfolio Actions


*maf - million acre-feet

North Lahontan Hydrologic Region

The North Lahontan Hydrologic Region (North Lahontan region) includes part of the western edge of the Great Basin, a large landlocked area that covers most of Nevada and northern Utah. The eastern drainages of the Cascade Range and the eastern Sierra Nevada, north of the Mono Lake drainage, make up the region. All surface water drains eastward toward Nevada. This hydrologic region extends about 270 miles from the Oregon border to the southern boundary of the Walker River drainage in Mono County. The region covers 6,122 square miles, about 4 percent of California's total area, but is inhabited by only about 0.3 percent of the state's population. The region includes portions of Modoc, Lassen, Sierra, Nevada, Placer, El Dorado, Alpine, and Mono counties (California Water Plan Update 2013).

The region abounds with large, natural landscapes. The northern part is primarily arid high desert with relatively flat valleys at elevations of 4,000 to 5,000 feet. The eastern slopes of the Sierra Nevada comprise the central and southern portions of this region, which includes the California portion of the Lake Tahoe Basin and the western Great Basin. The major rivers of the region — Truckee, Carson, and Walker — carry the mountain snowmelt through California into Nevada. Mountain peaks up to 12,279 feet from the western boundary of the region (California Water Plan Update 2013).

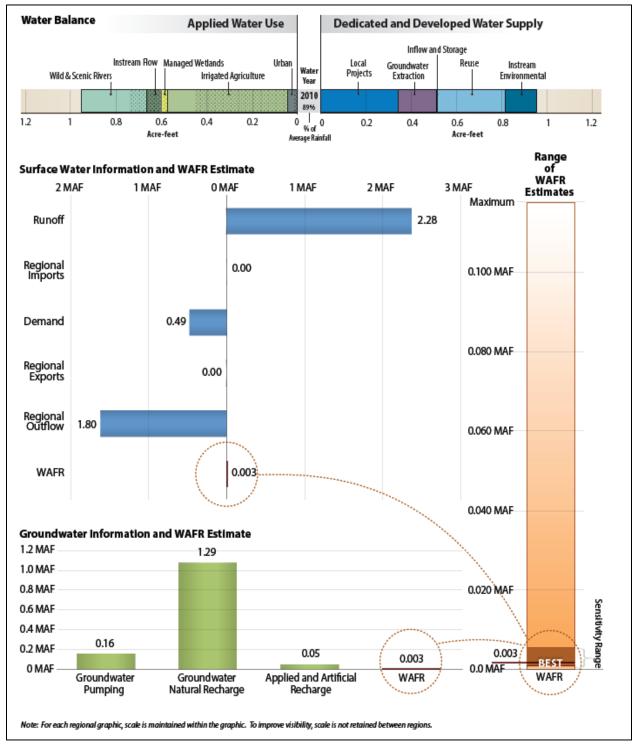

The North Lahontan region is divided into two Planning Areas: Northern Planning Area, PA 801, and Southern Planning Area, PA 802. North Lahontan, PA 801 and PA 802 are shown in Figure A-NL1.

Figure A-NL1. North Lahontan, PA 801 and PA 802

Summary of WAFR Information and Estimates

WAFR information and estimates for North Lahontan Hydrologic Region, Planning Area 801, and Planning Area 802 are shown in Figures A-NL2 and A-NL3.

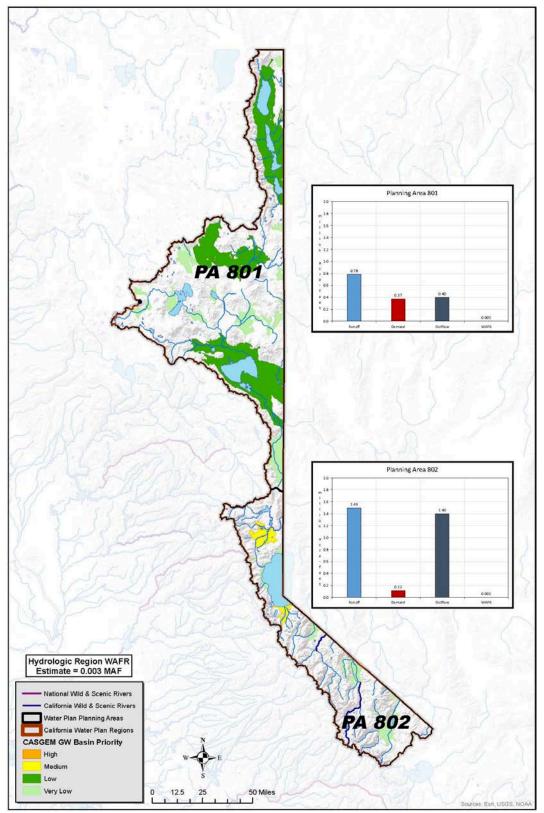


Figure A-NL3. North Lahontan Hydrologic Region PA 801 and 802 WAFR Information and Estimates

WAFR Information and Estimates

The North Lahontan region contains all of the Susan River; the upper parts of the Truckee, Carson, and Walker River basins; and the Surprise Valley watersheds. These streams have no outlets to the sea and terminate in lakes or playas. Most rivers have elevated baseflows due to snowmelt from the Sierra Nevada and Cascade mountains, and from reservoir releases that maintain instream flows (California Water Plan Update 2013).

In the north, the Susan River flows southeasterly and empties into Honey Lake. Other minor streams in the north begin in the Warner Mountains and drain into Lower, Middle, or Upper Alkali lakes in Surprise Valley. The major portion of the Truckee River system originates in California and flows into Lake Tahoe and out toward Reno, Nevada, and then into Pyramid Lake. Trout Creek and the Upper Truckee River flow from the western slopes of the Carson Range and the eastern slopes of the Sierra into Lake Tahoe at the city of South Lake Tahoe. The Little Truckee River conflates with the Truckee River near the head of Truckee Canyon just west of the river's exit into Nevada. The east and west forks of the Carson River are separate in California. These watersheds drain Alpine County and flow into Nevada. The two forks of the Carson River meet near Minden, Nevada, and terminate near Fallon, Nevada, in either Carson Lake and Pasture or the Carson Sink. The East and West Walker rivers, entirely separate in California, originate in Mono County, flow into Nevada, join near Yerington, and then flow to Walker Lake (California Water Plan Update 2013).

On an average annual basis, 23.1 inches of precipitation falls upon the region, with most precipitation falling as snow along the crest of the Sierra Nevada Mountains and Warner Mountains (California Water Plan Update 2013). The following sections provide the WAFR information and estimates and describe how it was determined for each Planning Area within the North Lahontan Hydrologic Region.

Surface Water and Groundwater Information

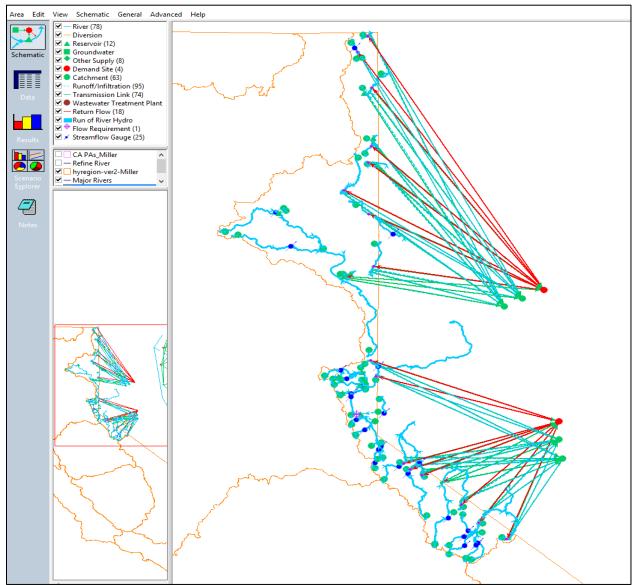
North Lahontan, PA 801, and PA 802 surface water and groundwater information (as defined in the Surface Water and Groundwater Information section) is provided in Table A-NL1.

Geographical Region	Regional Imports (maf)	Regional Exports (maf)	Groundwater Pumping (maf)	Groundwater Natural Recharge (maf)	Applied and Artificial Recharge (maf)
North					
Lahontan HR	0.00	0.00	0.16	1.29	0.05
PA 801	0	0	-	-	-
PA 802	0	0	-	-	-

Table A-NL1. North Lahontan, PA 801, and PA 802 Surface Water and Groundwater Information

Water Available for Replenishment Information and Estimates

WAFR Estimates


The following sections describe how the WAFR estimates were determined.

WEAP Model

The North Lahontan WEAP Model was developed using the procedures described in the <u>WEAP Model</u> <u>Methodology section</u> and described in more detail in the following sections.

Model Domain

The North Lahontan WEAP Model domain is shown in Figure A-NL4.

Figure A-NL4. North Lahontan WEAP Model

Water Available for Replenishment Information and Estimates

Streams/Rivers and Delineation of Watershed

The North Lahontan WEAP Model streams/rivers with corresponding Planning Area are shown in Table A-NL2.

River/Stream (PA 801)	River/Stream	(PA 802)
Bare Creek	Blackwood Creek	Prosser Creek
Bidwell Creek	Bodie Creek	Robinson Creek
Cold Springs Creek	Bryant Creek	Rough Creek
Long Valley Creek	Buckeye Creek	Sagenen Creek
Pine Creek	Desert Creek	Saxon Creek
Red Rock Creek	Dog Creek	Swauger Creek
Sand Creek	Donner Creek	Truckee Marsh
Skedaddle	East Fork Carson River	Truckee River
Smoke Creek	East Walker River	Upper Truckee River
Susan River	General Creek	Virginia Creek
Tenmile Creek	Green Creek	West Fork Carson River
Tudedad Canyon Wash	Independence Creek	West Walker River
Willow Creek	Little Truckee River	

Table A-NL2	. North Lahontar	n Streams/Rivers
-------------	------------------	------------------

Watersheds in North Lahontan region were delineated to determine the runoff from each stream using the procedures described in the <u>WEAP Model Methodology section</u>.

Reservoir

Reservoirs included in the North Lahontan WEAP model with the corresponding Planning Areas are:

- Boca Reservoir (Little Truckee River, PA 802).
- Bridgeport Reservoir (East Walker River, PA 802).
- Donner Lake (Donner Creek, PA 802).
- Eagle Lake (PA 801).
- Honey Lake (PA 801).
- Independence Lake (Independence Creek, PA 802).
- Lake Tahoe (PA 802).
- Lower Lake (PA 801).
- Middle Alkali Lake (PA 801).
- Prosser Creek Reservoir (Prosser Creek, PA 802).
- Stampede Reservoir (Little Truckee River, PA 802).
- Upper Lake (PA 801).

Demands

The North Lahontan region demands were determined using the procedures described in the <u>WEAP</u> <u>Model Methodology section</u> and described in the following sections.

Urban Indoor Demand

The Urban Indoor Annual Activity Level and Annual Water Use Rate for each Planning Area are shown in Table A-NL3.

	PA 8	01	PA 802		
Category	Annual Activity Level (person/household)	Annual Water Use Rate (TAF per person/househol d)	Annual Activity Level (person/household)	Annual Water Use Rate (TAF per person/household)	
Commercial	15,927	0.000047	29,729	0.000047	
Industrial	1,223	0.006694	11	0.006694	
Multi-					
Family	1,836	0.000160	5,466	0.000160	
Single-					
Family	6,967	0.000182	20,743	0.000182	

Table A-NL3. Annual Activity Level and Annual Water Use Rate by Category

Urban Outdoor Demand

The acres for each land use class by Planning Area are shown in Table A-NL4.

Table A-NL4.	Urban	Outdoor	Land	Use Class Acres
--------------	-------	---------	------	------------------------

Land Use Class	PA 801 Acres	PA 802 Acres
Commercial	196.15	482.10
Multi-Family	97.14	107.36
Public	187.20	332.80
Single-Family	649.56	717.94
Total	1,130.05	1,640.20

Agricultural Demand

The acres for each crop type by Planning Area are shown in Table A-NL5.

	PA 801 Acres	PA 802 Acres
Сгор	(thousand)	(thousand)
Grain	5.293	0
Pasture	52.58	33.71
Processed Tomato	0	0
Fresh Tomato	0	0
Cucurbits	0	0
Onion and Garlic	0.311	0
Potato	0	0
Other Truck	0.473	0
Almond and Pistachio	0	0
Other Deciduous	0.005	0
Sub-Tropical	0	0
Rice	10.208	0
Vine	0	0
Cotton	0	0
Sugar Beet	0	0
Corn	0	0
Dry Bean	0.154	0
Safflower	0.42	0
Other Field	0	0
Alfalfa	31.665	3.028
Total	101.109	36.738

Table A-NL5.	Crop a	acres by	Crop '	Tvpe
	CIOP C		CI OP	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Calibration

The North Lahontan WEAP Model was calibrated using the procedures described in the <u>WEAP Model</u> <u>Methodology section</u>.

Calibration Data Collection

Calibrated Watersheds with corresponding gage information are shown in Table A-NL6.

Gage Name	Site Number	Drainage Area (Square Miles)	GageGage Flow Starting Date	Gage Flow Ending Date
BIDWELL C BL MILL C NR FORT BIDWELL CA	10360900	25.6	10/1/1960	9/30/1982
SMOKE CK BLW RESERVOIR NR SMOKE CK NV	10353800	50.1	12/15/1988	7/18/2011
PINE C NR SUSANVILLE CA	10359300	226	10/1/1960	9/30/1982
SUSAN R A SUSANVILLE CA	10356500	184	6/1/1900	10/12/1994
DOG CK AT VERDI NV	10347310	24.2	11/5/1992	8/8/2016
LITTLE TRUCKEE R NR HOBART MILLS CA	10342000	36.5	1/1/1947	10/10/1972
SAGEHEN C NR TRUCKEE CA	10343500	10.5	10/1/1953	8/8/2016
Third Ck nr Crystal Bay NV	10336698	6.05	10/1/1969	8/8/2016
BLACKWOOD C NR TAHOE CITY CA	10336660	11.2	10/1/1960	8/8/2016
GENERAL C NR MEEKS BAY CA	10336645	7.44	7/7/1980	8/8/2016
UPPER TRUCKEE RV AT S UPPER TRUCKEE RD NR MEYERS	10336580	14.09	5/12/1990	9/30/2011
UP TRUCKEE R A SOUTH LAKE TAHOE CA	10336610	54.9	10/1/1971	8/8/2016
TROUT C NR TAHOE VALLEY CA	10336780	36.7	10/1/1960	8/8/2016
WEST FORK CARSON RIVER AT WOODFORDS CA	10310000	65.4	10/1/1900	8/8/2016
BRYANT C NR GARDNERVILLE NV	10308800	31.5	6/1/1961	8/8/2016
E F CARSON R BL MARKLEEVILLE C NR MARKLEEVILLECA	10308200	276	9/1/1960	8/8/2016
W WALKER R BLW L WALKER R NR COLEVILLE CA	10296000	181	4/1/1938	8/8/2016
Green Creek near Bridgeport CA	10289500	19.5	10/1/1953	10/13/2015
Virginia C nr Bridgeport CA	10289000	63.6	10/1/1953	9/30/2009
Robinson C at Twin Lks Outlet nr Bridgeport CA	10290500	39.1	10/1/1953	3/10/2016
Buckeye C nr Bridgeport CA	10291500	44.1	4/1/1911	3/3/2016
Swauger C nr Bridgeport CA	10292000	52.8	10/1/1953	9/30/2006

Table A-NL6. Calibrated Gage Location	ted Gage Locations
---------------------------------------	--------------------

Calibration Results

Calibrated Watersheds with corresponding NSE and PBIAS are shown in Table A-NL7.

Location	Nash Sutcliffe Coefficient of Efficiency (NSE)	Percent Bias (PBIAS)			
BIDWELL C BL MILL C	0.80	-13.98			
	0.91	-5.92			
Buckeye C nr Bridgeport CA	0.72	-14.89			
BLACKWOOD C NR TAHOE CITY CA	-				
BRYANT C NR GARDNERVILLE NV	0.65	-8.97			
E F CARSON R BL MARKLEEVILLE C	0.85	-7.52			
W F CARSON R AT WOODFORDS CA	0.75	-8.69			
DOG CK AT VERDI NV	0.66	-5.49			
Green Creek near Bridgeport CA	0.85	-14.22			
GENERAL C NR MEEKS BAY CA	0.74	-12.53			
LITTLE TRUCKEE R	0.76	-11.51			
PINE C NR SUSANVILLE CA	0.30	2.02			
Robinson C at Twin Lks	0.90	2.46			
SAGEHEN C NR TRUCKEE CA	0.80	-7.89			
TROUT C NR TAHOE VALLEY CA	0.86	-10.49			
SMOKE CK BLW RESERVOIR	0.61	1.65			
SUSAN R A SUSANVILLE CA	0.67	13.65			
Swauger C nr Bridgeport CA	0.76	7.54			
Third Ck nr Crystal Bay NV	0.83	-5.25			
UPPER TRUCKEE RV NR MEYERS	0.80	-13.07			
UP TRUCKEE R A S LAKE TAHOE	0.68	-5.61			
Virginia C nr Bridgeport CA	0.68	-11.64			
W WALKER R NR COLEVILLE CA	0.87	-6.76			

WEAP Outflow

The WEAP outflow for North Lahontan, PA 801, and PA 802 is shown in Table A-NL8.

Table A-NL8. North Lahontan, PA 801, and	d PA 802 WEAP Outflow
--	-----------------------

Geographical Region	Outflow (MAF)
North Lahontan	1.80
PA 801	0.40
PA 802	1.40

WAFR Fraction

The following sections describe how the WAFR Fraction was determined for North Lahontan, PA 801, and PA 802.

Gage Data

Gage data for seven major rivers in the North Lahontan region was compiled. In each river or stream, the most downstream gage was selected to account for water demands within the watershed and to develop a WAFR fraction that is applicable to regional outflow.

From the Truckee River watershed south, gage records are very complete, with the Truckee, Carson, and Walker rivers covering most of the region's southern half. The northern half of the region has very limited gage data. Data for the Susan River was compiled, as it is the largest river in this area. Bidwell Creek, on the eastern slope of the Warner Mountains, was chosen as a representative stream for the rest of the region.

A summary of the stream gage used in this analysis is presented in Table A-NL9. A map showing the locations of the gages used, and their respective watersheds is shown in Figure A-NL5.

River/Stream	Location	USGS Gage Number	Area (square miles)	
Bidwell Creek	Fort Bidwell	10360900	26	
Susan River	Susanville	10356500	184	
Truckee River	Farad	10346000	932	
W Fk Carson River	Woodfords	10310000	65	
E Fk Carson River	Markleeville	10308200	276	
W Walker River	Coleville	10296500	250	
E Walker River	Bridgeport	10293000	359	

Table A-NL9. Major Rivers and Gages in North Lahontan Hydrologic Region Analysis

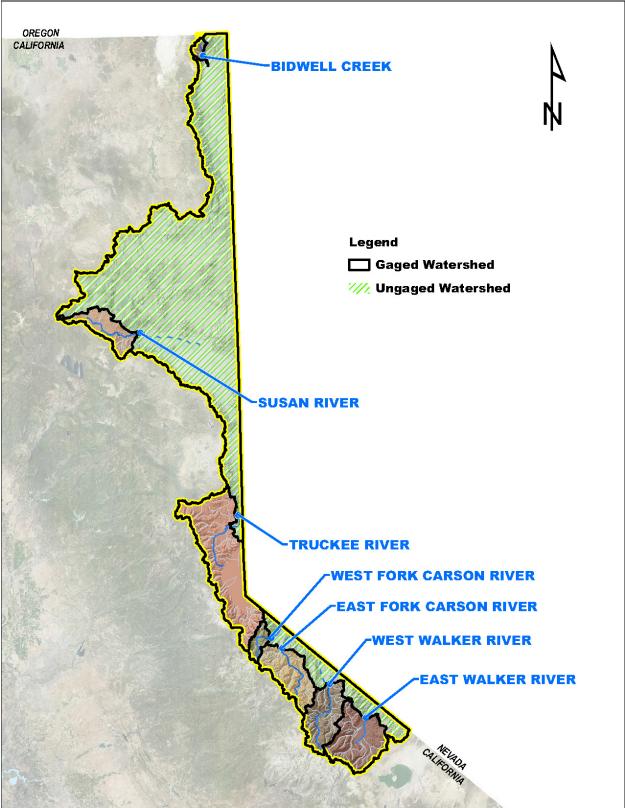


Figure A-NL5. Watersheds for Major Gaged Streams in North Lahontan Hydrologic Region Analysis

Once the available gage data was compiled, the periods of available data for the seven gages were compared. Data availability, by year, is presented in Figure A-NL6.

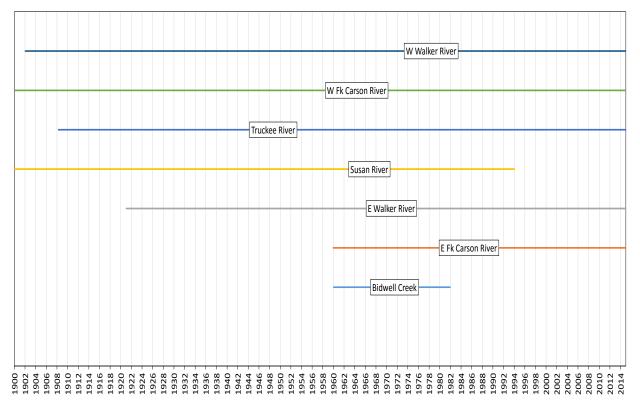


Figure A-NL6. Period of Available Gage Data in North Lahontan Hydrologic Region Analysis

In addition to streams declared Fully Appropriated, the State Water Resources Control Board maintains a list of adjudicated rivers and streams. Adjudicated streams are excluded from this analysis because an adjudication is typically preceded by water rights litigation and is an indication that only limited volumes of water may be infrequently available for new purposes. Additionally, the two major rivers of the region, the Truckee and Walker, both flow into Nevada and hence into desert terminal lakes (Pyramid Lake and Walker Lake, respectively). In both instances, there has been significant litigation and effort spent to maintain or even increase the volume of flow into both lakes. Therefore, the ability to develop a project to make water available for replenishment from these rivers is limited.

Of the gage data compiled, the only streams not Fully Appropriated year-round or adjudicated are the East Fork of the Carson River and Bidwell Creek. These streams were used in determining WAFR fractions.

The gage data outflow, diverted water using Conceptual Project (WAFR), and WAFR Fraction (diverted water using Conceptual Project (WAFR)/Gage Data Outflow) for each stream and the North Lahontan Hydrologic Region is shown in Table A-NL10.

River/Stream	Gage Data	Data		' Best Estimate		Upper Sensitivity Range Estimate		Maximum Project Estimate	
	Outflow (TAF)*	WAFR (TAF)	WAFR Fraction (%)	WAFR (TAF)	WAFR Fraction (%)	WAFR (TAF)	WAFR Fraction (%)	WAFR (TAF)	WAFR Fraction (%)
Bidwell Creek	15.8	0.28	1.74%	0.85	5.25%	1.58	9.73%	9.98	63.15%
Susan River	61.5	0.01	0.00%	0.00	0.00%	0.00	0.00%	0.00	0.00%
Truckee River	576.5	0.00	0.00%	0.00	0.00%	0.00	0.00%	0.00	0.00%
W Fk Carson River	73.7	0.00	0.00%	0.00	0.00%	0.00	0.00%	0.00	0.00%
E Fk Carson River	249.6	0.00	0.00%	0.00	0.00%	0.00	0.00%	0.00	0.00%
W Walker River	193.6	0.00	0.00%	0.00	0.00%	0.00	0.00%	0.00	0.00%
E Walker River	111.7	0.42	0.37%	1.14	1.02%	2.26	0.71%	73.54	65.86%
HR Total	1,282.41	0.70	0.05%	2.00	0.16%	3.84	0.30%	83.52	6.51%

Table A-NL10. WAFR Fraction

* Please note that the outflow is based on gaged streams only. The final WAFR estimates include outflow from the WEAP model for both gaged and ungaged watersheds.

Final WAFR Estimates

The outflow estimate simulated using the WEAP model was then multiplied by the range of water available for replenishment fractions determined by the historical gage data to determine the estimated range of WAFR estimates within the hydrologic region. The array of estimates for North Lahontan, PA 801 and PA 802 are shown in Table A-NL11 using the WEAP outflow from Table A-NL8 and water available for replenishment fractions from Table A-NL10 above.

Geographical Region	WEAP Outflow (maf)	No Project Estimate (maf)	Lower Sensitivity Range Estimate (maf, WAFR Fraction 0.05%)	Best Estimate (maf, WAFR Fraction 0.16%)	Upper Sensitivity Range Estimate (maf, WAFR Fraction 0.30%)	Maximum Project Estimate (maf, WAFR Fraction 6.51%)
North Lahontan Hydrologic Region	1.80	0	0.001	0.003	0.005	0.177
PA 801	0.40	0	0.000	0.001	0.001	0.026
PA 802	1.40	0	0.001	0.002	0.004	0.091

Table A-NL11. Final WAFR Estimates

Potential Water Development by Other Methods (recycled water, desalination and water conservation)

Estimates of potential water development by other methods (recycled water, desalination and water conservation) are also shown for North Lahontan region in Table A-NL12. Note that these estimates were not specifically made for use for groundwater replenishment and will need to be considered by GSAs more thoroughly for such purpose.

Method	Volume of Water Increase from 2010 to 2020		
Recycle	0 maf		
Desalination	-		
Conservation	0 maf		

Table A-NL12. North Lahontan Urban Water Portfolio Actions

South Lahontan Hydrologic Region

The <u>South Lahontan Hydrologic Region</u> represents about 17 percent of the land area in California: more than 17 million acres of land. The region includes Inyo County and portions of Mono, San Bernardino, Kern, and Los Angeles counties. It is bounded to the north by the drainage divide between Mono Lake and East Walker River; to the west and south by the Sierra Nevada, San Gabriel, San Bernardino, and Tehachapi mountains; to the southeast by the New York Mountains and to the east by the state of Nevada (<u>California Water Plan Update 2013</u>).

The topography of the South Lahontan region is characterized by fault-bounded mountain blocks separated by basins filled principally with alluvial and lake sediments and lesser volcanic material. The region is part of the basin and range province, which spans Nevada, western Utah, southern Idaho, southern Oregon, southeastern California, and southwestern Arizona. The highest and lowest points in the conterminous United States are in the central part of the region: Mt. Whitney with an elevation of 14,495 feet above sea level and Badwater in Death Valley at 282 feet below sea level. The most prominent mountain ranges are the Sierra Nevada, the White-Inyo Mountains, the Panamint Range, the Amargosa Range, the Tehachapi Mountains, the San Gabriel Mountains, and the San Bernardino Mountains (California Water Plan Update 2013).

On an average annual basis, 7.8 inches of precipitation falls upon the region, with the vast majority falling as snow along the crest of the high southern Sierra Nevada. The region is primarily desert, and includes Death Valley National Park, the region that receives the least rainfall in the country. The majority of the runoff in the region is originates from the eastern slopes of the Sierra Nevada Mountains and forms the Owens River Watershed, which is notable as the source of water for the Los Angeles Aqueduct (California Water Plan Update 2013).

The South Lahontan region is divided into five Planning Areas: PA 901, PA 902, PA 903, PA 904, and PA 905. South Lahontan, PA 901, PA 902, PA 903, PA 904, and PA 905 are shown in Figure A-SL1.

Figure A-SL1. South Lahontan, PA 901, PA 902, PA 903, PA 904 and PA 905

Summary of WAFR Information and Estimates

WAFR information and estimates for South Lahontan Hydrologic Region, PA 901, PA 902, PA 903, PA 904, and PA 905 are shown in Figures A-SL2 and A-SL3.

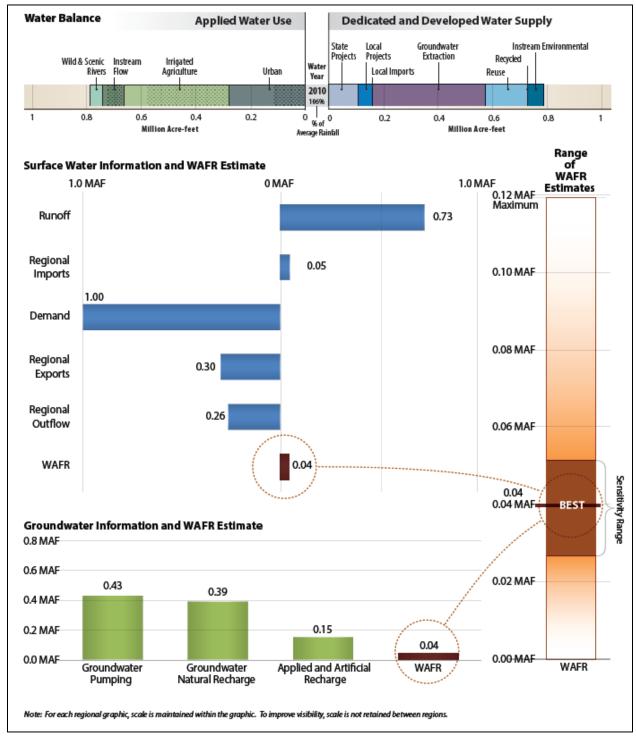


Figure A-SL2. South Lahontan Hydrologic Region WAFR Information and Estimates

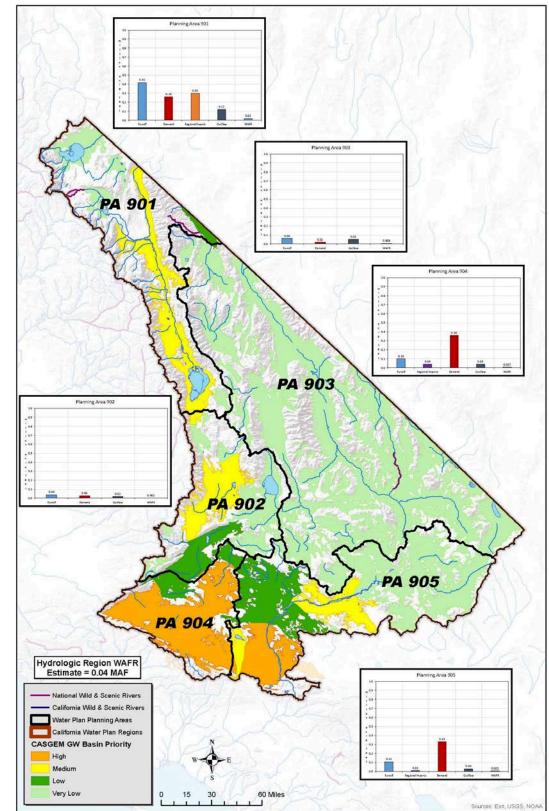


Figure A-SL3. South Lahontan Hydrologic Region PA 901, PA 902, PA 903, PA 904, and PA 905 WAFR Information and Estimates

WAFR Information and Estimates

The region's past tectonic activities and current climate are responsible for the region's present day hydrologic and drainage characteristics. The bordering mountain ranges have left the region without an outlet to the Pacific Ocean. As a result, all rivers and streams drain to internal basins. For most of the year, flows in these waterways are, at best, ephemeral and intermittent — a condition that reflects the region's present day arid conditions. Surface runoff can result from summer thunderstorms and occasionally winter storms (California Water Plan Update 2013).

Major tributaries in South Lahontan HR are Owens River, Rush Creek, Lee Vining Creek, and Mill Creek.

The WAFR information and estimates are provided in the following sections.

Surface Water and Groundwater Information

South Lahontan, PA 901, PA 902, PA 903, PA 904, and PA 905 surface water and groundwater information (as defined in the Surface Water and Groundwater Information section) is provided in Table A-SL1.

Table A-SL1. South Lahontan, PA 901, PA 902, PA 903, PA 904, and PA 905 Surface Water and
Groundwater Information

Geographical Region	Regional Imports (maf)	Regional Exports (maf)	Groundwater Pumping (maf)	Groundwater Natural Recharge (maf)	Applied and Artificial Recharge (maf)
South					
Lahontan HR	0.05	0.30	0.43	0.39	0.15
PA 901	0.0	0.30	-	-	-
PA 902	0.0	0.0	-	-	-
PA 903	0.0	0.0	-	-	-
PA 904	0.04	0.0	-	-	-
PA 905	0.01	0.0	-	-	-

WAFR Estimates

The following sections describe how the WAFR estimates were determined.

WEAP Model

The South Lahontan WEAP Model was developed using the procedures described in the <u>WEAP Model</u> <u>Methodology section</u> and described in more detail in the following sections.

Model Domain

The South Lahontan WEAP Model domain is shown in Figure A-SL4.

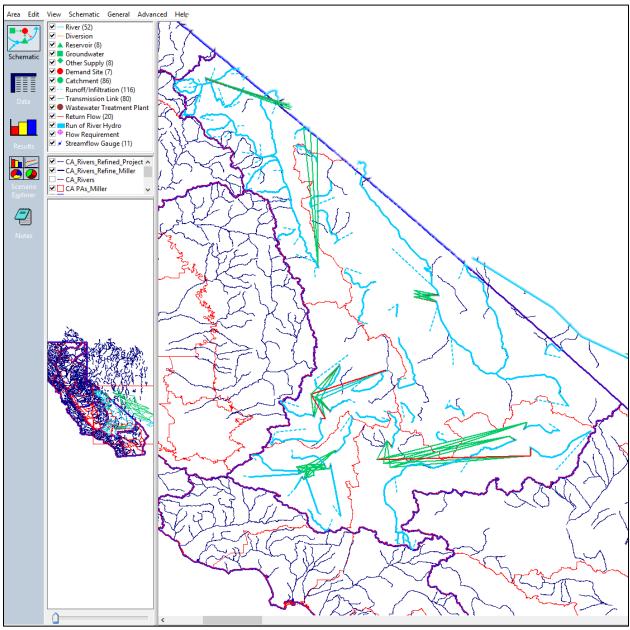


Figure A-SL4. South Lahontan WEAP Model

Streams/Rivers and Delineation of Watershed

The South Lahontan WEAP Model streams/rivers with corresponding Planning Areas are shown in Table A-SL2.

River/Stream	River/Stream	River/Stream	River/Stream	River/Stream
(PA 901)	(PA 902)	(PA 903)	(PA 904)	(PA 905)
AdobeValley	Cache Creek	Alkali Flat	Little Rock Creek	Black Canyon
		Drainage		
Big Pine Creek	Cottonwood Creek	Amargosa River	Cottonwood Creek	Kelso Wash
Bishop Creek	CuddlebackLake	Crooked Creek	Fremont Valley	Mojave River
			Drainage	
Dry Creek	Little Dixie Wash	Darwin Wash	Kern Drainage	West Fork Mojave
				River
East Mono Lake	Teagle Wash	Death Valley	Pearblossom	Willow Creek
Drainage		Wash	Runoff	
Huntoon Creek	Unnamed Stream	Kingston Wash	Rogers Dry Lake	Willow Wash
	8945		Drainage	
Independence		Marble Canyon	Unnamed Stream	
Creek			8940	
Lee Vining Creek		Potosi Wash	Unnamed Stream	
			8946	
Mammoth Creek		Salt Creek		
Mill Creek		Unnamed Stream		
		8931		
Owens River		Unnamed Stream		
		8934		
Rush Creek		Unnamed Stream		
		8947		
Unnamed Stream		Unnamed Stream		
7800		8948		
Unnamed Stream		Unnamed Stream		
8887		8952		
West Mono Lake		Waucoba Wash		
Drainage				

Table A-SL2. South Laho	ntan Streams/Rivers
-------------------------	---------------------

Watersheds in South Lahontan region were delineated to determine the runoff from each stream using the procedures described in the <u>WEAP Model Methodology section</u>.

Water Available for Replenishment Information and Estimates

Reservoir

Reservoirs included in the South Lahontan WEAP model with the corresponding Planning Areas are:

- Grant Lake (Rush Creek, PA 901).
- Lake Arrowhead (Willow Creek, PA 905).
- Lake Crowley (Owens River, PA 901).
- Lake Sabrina (Bishop Creek, PA 901).
- Mono Lake (PA 901).
- Saddlebag Lake (Lee Vining Creek, PA 901).
- Silverwood Lake (West Fork Mojave River, PA 905).
- Tinemaha Reservoir (Owens River, PA 901).

Demands

The South Lahontan region demands were determined using the procedures described in the <u>WEAP</u> <u>Model Methodology section</u> and described in the following sections.

Urban Indoor Demand

The Urban Indoor Annual Activity Level and Annual Water Use Rate for each Planning Area are shown in Table A-SL3.

	Annual Activity Level (person/household)	Annual Water Use Rate (TAF per person/household)	Annual Activity Level (person/household)	Annual Water Use Rate (TAF per person/household)
	PA 9	01	PA 90)2
Commercial	26,765	0.000032	22,647	0.000032
Industrial	0	0.000105	692	0.000105
Multi-Family	5,722	0.000190	9,537	0.000190
Single-Family	11,494	0.000236	19,156	0.000236
	PA 9	03	PA 904	
Commercial	61,766	0.000032	123,531	0.000032
Industrial	0	0.000105	16,613	0.000105
Multi-Family	2,861	0.000190	30,835	0.000190
Single-Family	5,747	0.000236	61,939	0.000236
	PA 9	05		
Commercial	170,885	0.000032		
Industrial	13,152	0.000105		
Multi-Family	48,955	0.000190		
Single-Family	98,337	0.000236		

Table A-SL3. Annual Activity Level and Annual Water Use Rate by Category

Urban Outdoor Demand

The acres for each land use class by Planning Area are shown in Table A-SL4.

Land Use Class	PA 901 Acres	PA 902 Acres	PA 903 Acres	PA 904 Acres	PA 905 Acres
Commercial	103.25	74.64	194.65	405.27	506.26
Multi-Family	64.20	89.70	0	803.99	598.02
Public	143.26	136.09	0	753.81	244.93
Single-Family	594.64	830.77	0	7,446.65	5,538.91
Total	905.35	1,131.20	194.65	9,409.72	6,888.12

Table A-SL4. Urban Outdoor Land Use Class Acres

Agricultural Demand

The acres for each crop type by Planning Area are shown in Table A-SL5.

	PA 901 Acres	PA 902 Acres	PA 903 Acres	PA 904 Acres	PA 905 Acres
Crop	(thousand)	(thousand)	(thousand)	(thousand)	(thousand)
Grain	0.1	0	0	4.16	0.78
Rice	0	0	0	0	0
Cotton	0	0	0	0	0
Sugar Beet	0	0	0	0	0
Corn	0	0	0	0.04	0.08
Dry Bean	0	0	0	0	0
Safflower	0	0	0	0	0
Other Field	0.5	0.04	0	0.7	0.42
Alfalfa	12.36	0.66	0.64	7.18	10.36
Pasture	16.5	0.09	0.41	0.28	1.0
Processed					
Tomato	0	0	0	0	0
Fresh Tomato	0	0	0	0	0
Cucurbits	0	0	0	0.1	0
Onion and Garlic	0.06	0.2	0	1.63	0
Potato	0.00	0.24	0	0.56	0
Other Truck	0	0.62	0	2.2	0.06
Almond and	0	0.02	0	2.2	0.00
Pistachio	0	0.06	0.06	0.08	0.33
Other					
Deciduous	0.01	0.18	0	1.33	0.22
Sub-Tropical	0	0	0.02	0	0
Vine	0	0	0	0.33	0
Total	29.53	2.09	1.13	18.59	13.25

Table A-SL5. Crop acres by Crop Type

Calibration

The South Lahontan WEAP Model was calibrated using the procedures described in the <u>WEAP Model</u> <u>Methodology section</u>.

Calibration Data Collection

Calibrated Watersheds with corresponding gage information are shown in Table A-SL6.

Gage Name	Site Number	Drainage Area (Square Miles)	Gage Flow Starting Date	Gage Flow Ending Date
MILL C BL LUNDY LK NR LEE VINING CA	10287069	17.1	7/19/1991	7/17/2014
RUSH C AT FLUME BL AGNEW LAKE NR JUNE LAKE CA	10287289	23.3	10/31/1990	6/4/2014
HOT C A FLUME NR MAMMOTH LAKES CA	10265150	68.3	6/11/1990	10/17/2013
MF BISHOP C BL LK SABRINA NR BISHOP CA	10270872	16.7	7/15/1991	5/23/2014
BIG PINE C NR BIG PINE CA	10276000	32.6	7/15/1908	9/5/1978
INDEPENDENCE C BL PINYON C NR INDEPENDENCE CA	10281800	18.1	7/3/1923	7/27/1978
AMARGOSA RV AT TECOPA, CA	10251300	3090	9/26/1962	11/22/2013
LITTLE ROCK C AB LITTLE ROCK RES NR LITTLEROCK CA	10264000	49	4/26/1931	1/9/2005

Table A-SL6.	Calibrated	Gage	Locations
	cambrateu	Juge	Locations

Calibration Results

Calibrated Watersheds with corresponding NSE and PBIAS are shown in Table A-SL7.

Location	Nash Sutcliffe Coefficient of Efficiency (NSE)	Percent Bias (PBIAS)
Amargosa Creek @ Tecopa	0.66	3.02
Big Pine Creek WS	0.70	2.25
Upper Bishop Creek WS	0.47	-25.0
Independence Creek WS	0.71	-9.98
Lower Little Rock C WS	0.62	-6.5
Hot Creek WS	0.76	-13.33
Mill Creek WS	0.72	3.24
Grant Lake Rush Creek WS	0.70	13.52

Table A-SL7. Calibrated Watersheds with corresponding NSE and PBIAS

WEAP Outflow

The WEAP outflow for South Lahontan, PA 901, PA 902, PA 903, PA 904, and PA 905 is shown in Table A-SL8.

Table A-SL8. South Lahontan, PA 901, PA 902, PA 903, PA 904, and PA 905 WEAP Outflow

Geographical Region	Outflow (maf)
South Lahontan	0.26
PA 901	0.12
PA 902	0.02
PA 903	0.05
PA 904	0.04
PA 905	0.03

WAFR Fraction

The following sections describe how the WAFR Fraction was determined for South Lahontan, PA 901, PA 902, PA 903, PA 904, and PA 905.

Gage Data

Gage data for five major rivers in the South Lahontan Hydrologic Region was compiled. In each river or stream, the most downstream gage was selected to account for water demands within the watershed and to develop a WAFR fraction that is applicable to regional outflow.

Water Available for Replenishment Information and Estimates

The total area of the gaged watersheds is 7,030 square miles of the 26,732 square mile region, or approximately 26 percent of the total hydrologic region. A summary of the stream gages used in this analysis is presented in Table A-SL9. A map showing the locations of the gages used, and their respective watersheds is shown as Figure A-SL5.

River/Stream	Location	USGS Gage Number	Area (square miles)
Amargosa River	Тесора	10251300	3,090
Big Rock Creek	Valyermo	10263500	23
Mojave River	Barstow	10262500	1,290
Owens River	Lone Pine	10285700	2,604
Rush Creek	June Lake	10287300	23

Table A-SL9. Major Rivers and Gages in South Lahontan Hydrologic Region Analysis

The bulk of the runoff in the South Lahontan Hydrologic Region drains the eastern slope of the Sierra Nevada Mountains along the Owens River and Rush Creek. Complete gage records are available for these major streams. In the southern portion of the region, the Mojave River and the Amagosa River drain a large portion of the desert floor. Gage data is also available for these rivers.

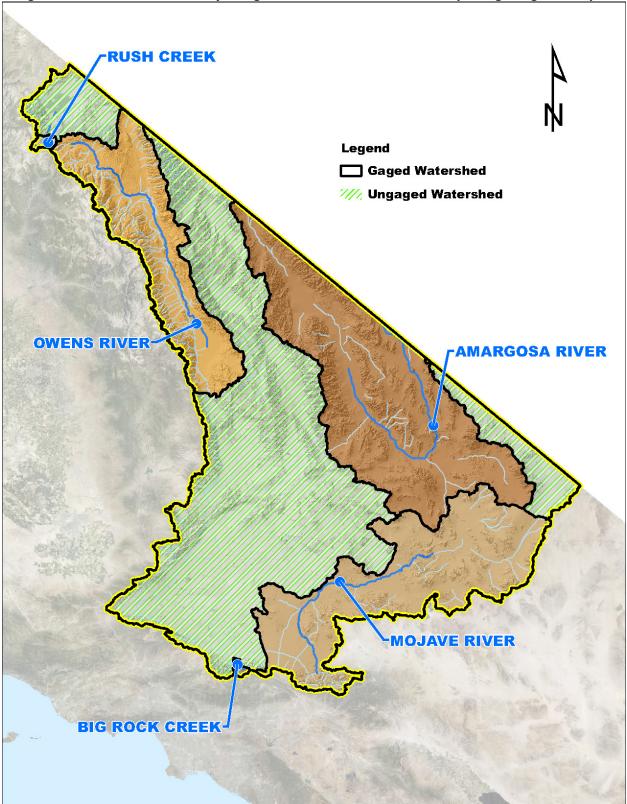


Figure A-SL5. Watersheds for Major Gaged Streams in South Lahontan Hydrologic Region Analysis

Once the available gage data was compiled, the period of available data for the five gages were compared. Data availability by year is presented in Figure A-SL6.

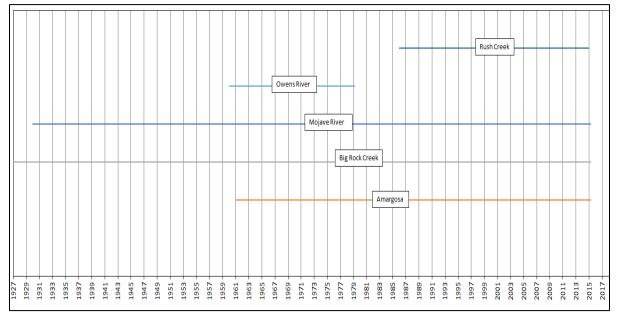


Figure A-SL6. Period of Available Gage Data in South Lahontan Hydrologic Region Analysis

Most rivers and streams in the South Lahontan Hydrologic Region are either designated as Wild and Scenic, Fully Appropriated year-round, or the subject of significant litigation. Therefore, WAFR fractions for the Planning Areas in this region are small.

The gage data outflow, diverted water using Conceptual Project (WAFR), and WAFR Fraction (diverted water using Conceptual Project (WAFR)/Gage Data Outflow) for each stream and the South Lahontan Hydrologic Region is shown in Table A-SL10.

Gage River/Stream Outflo			r Sensitivity e Estimate Best Estimate		Upper Sensitivity Range Estimate		Maximum Project Estimate		
	(TAF)*	WAFR (TAF)	WAFR Fraction (%)	WAFR (TAF)	WAFR Fraction (%)	WAFR (TAF)	WAFR Fraction (%)	WAFR (TAF)	WAFR Fraction (%)
Amargosa	2.4	0.00	0.00%	0.00	0.00%	0.00	0.00%	0.00	0.00%
Big Rock	13.3	0.34	2.57%	1.15	8.62%	1.94	14.57%	8.92	66.99%
Mojave	13.6	0.13	0.93%	0.25	1.85%	0.47	3.43%	13.54	99.50%
Owens	17.3	7.42	43.01%	11.18	64.82%	12.88	74.63%	12.95	75.08%
Rush	30.6	0.00	0.00%	0.00	0.00%	0.00	0.00%	0.00	0.00%
HR Total	77.2	7.9	10.219 %	12.6	16.30%	15.3	19.80%	35.4	45.88%

Table A-SL10. WAFR Fraction

* Please note that the outflow is based on gaged streams only. The final WAFR estimates include outflow from the WEAP model for both gaged and ungaged watersheds.

Final WAFR Estimates

The outflow estimate simulated using the WEAP model was then multiplied by the range of water available for replenishment fractions determined by the historical gage data to determine the estimated range of WAFR estimates within the hydrologic region. The array of estimates for South Lahontan, PA 901, PA 902, PA 903, PA 904, and PA 905 are shown in Table A-SL11 using the WEAP outflow from Table A-SL8 and water available for replenishment fractions from Table A-SL10 above.

Table A-SL11. Final WAFR Estimates

Geographical Region	WEAP Outflow (MAF)	No Project Estimate (MAF)	Lower Sensitivity Range Estimate (MAF, WAFR Fraction 10.22%)	Best Estimate (MAF, WAFR Fraction 16.3%)	Upper Sensitivity Range Estimate (MAF, WAFR Fraction 19.8%)	Maximum Project Estimate (MAF, WAFR Fraction 45.88%)
South Lahontan Hydrologic Region	0.26	0.0	0.027	0.042	0.051	0.119
PA 901	0.12	0.0	0.012	0.020	0.024	0.055
PA 902	0.02	0.0	0.002	0.003	0.004	0.009
PA 903	0.05	0.0	0.005	0.008	0.010	0.023
PA 904	0.04	0.0	0.004	0.007	0.008	0.018
PA 905	0.03	0.0	0.003	0.005	0.006	0.014

Potential Water Development by Other Methods (recycled water, desalination and water conservation)

Estimates of potential water development by other methods (recycled water, desalination and water conservation) are also shown for South Lahontan region in Table A-SL12. Note that these estimates were not specifically made for use for groundwater replenishment and will need to be considered by GSAs more thoroughly for such purpose.

Method	Volume of Water Increase from 2010 to 2020
Recycle	0.01 MAF
Desalination	-
Conservation	0.01 MAF

Table A-SL12.	South Lahont	an Urban Water	Portfolio Actions

Colorado River Hydrologic Region

The <u>Colorado River Hydrologic Region</u> is located in southeastern California and contains 12 percent of the state's land area. The Colorado River provides most of the eastern boundary, and the border with Mexico forms the southern boundary. The region includes Imperial County and portions of Riverside, San Bernardino, and San Diego counties. Many of the prominent watersheds in the Colorado River Hydrologic Region offer combinations of native vegetation and human-made environmental, urban, and agricultural land and water uses. Most of the Colorado River region has a subtropical desert climate with hot summers and short, mild winters. Annual average rainfall amounts range from a little over 6 inches to less than 3 inches. Most of the precipitation for the region occurs in the winter and spring. However, monsoonal thunderstorms, spawned by the movement of subtropical air from the south, do occur in the summer and can generate significant rainfall in some years. The region receives some water from State Water Project and the Colorado River (California Water Plan Update 2013).

The Colorado River HR is divided into six Planning Areas: PA 1001, PA 1002, PA 1003, PA 1004, PA 1005, and PA 1006. Colorado River HR, PA 1001, PA 1002, PA 1003, PA 1004, PA 1005, and PA 1006 are shown in Figure A-CR1.

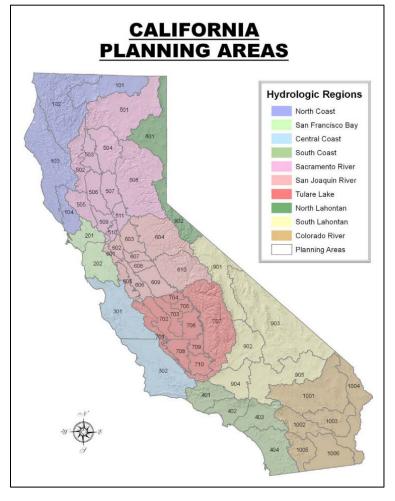


Figure A-CR1. Colorado River HR, PA 1001, PA 1002, PA 1003, PA 1004, PA 1005, and PA 1006

Summary of WAFR Information and Estimates

WAFR information and estimates for Colorado River HR, PA 1001, PA 1002, PA 1003, PA 1004, PA 1005, and PA 1006 are shown in Figures A-CC2 and A-CC3.

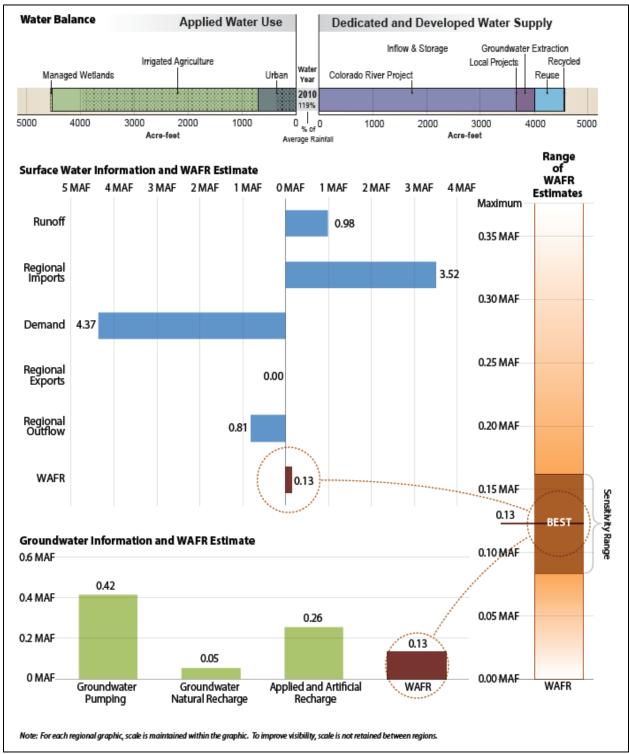


Figure A-CR2. Colorado River Hydrologic Region WAFR Information and Estimates

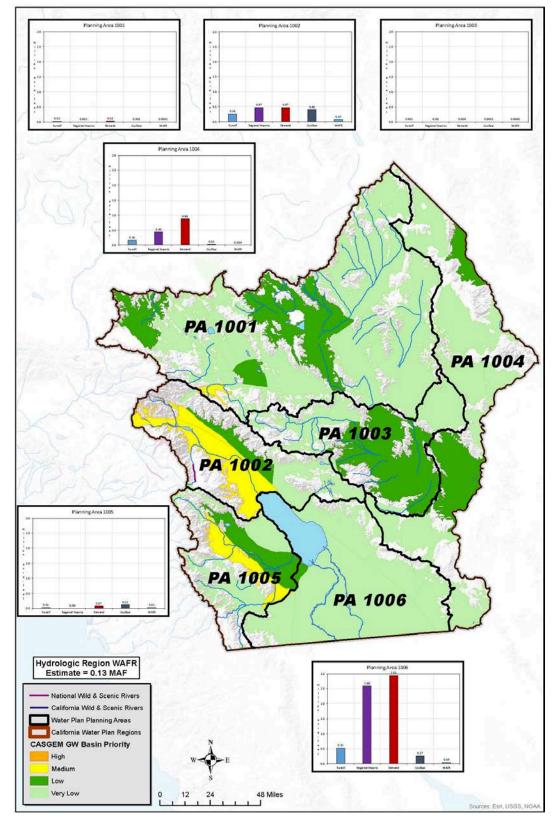


Figure A-CR3. Colorado River PA 1001, PA 1002, PA 1003, PA 1004, PA 1005, and PA 1006 WAFR Information and Estimates

WAFR Information and Estimates

The major tributaries in the Colorado River HR are the Watson Wash, Pipes Creek, White Water River, San Filipe, New River, Alamo River, Pinto Wash, and Arroyo Seco Milpitas Wash. Very little gage data exists for the Colorado River HR.

The Colorado River HR also receives imports from both the State Water Project (SWP) and Colorado River.

The WAFR information and estimates is provided in the following sections.

Surface Water and Groundwater Information

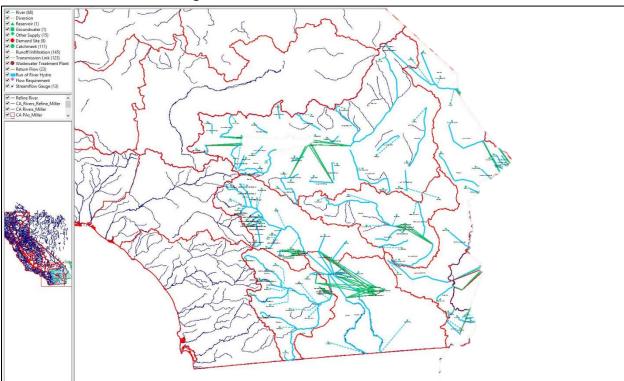
Colorado River HR, PA 1001, PA 1002, PA 1003, PA 1004, PA 1005, and PA 1006 surface water and groundwater information (<u>as defined in Surface Water and Groundwater section</u>) is provided in Table A-CR1.

Table A-CR1. Colorado River HR, PA 1001, PA 1002, PA 1003, PA 1004, PA 1005, and PA 1006 Surface Water and Groundwater Information

Geographical Region	Regional Imports (maf)*	Regional Exports (maf)	Groundwater Pumping (maf)	Groundwater Natural Recharge (maf)	Applied Recharge (maf)
Colorado	3.52				
River HR		0.0	0.42	0.05	0.26
	0.002				
PA 1001		0.0	-	-	-
	0.47				
PA 1002		0.0	-	-	-
PA 1003	0	0.0	-	-	-
	0.44				
PA 1004		0.0	-	-	-
	0				
PA 1005		0.0	-	-	-
	2.60				
PA 1006		0.0	-	-	-

* Regional imports for the Colorado HR account for Colorado River imports and SWP imports.

WAFR Estimates


The following sections describe how the WAFR estimates were determined.

WEAP Model

The Colorado River WEAP Model was developed using the procedures described in the <u>WEAP Model</u> <u>Methodology section</u> and described in more detail in the following sections.

Model Domain

The Colorado River WEAP Model domain is shown in Figure A-CR4.

Figure A-CR4. Colorado River WEAP Model

Streams/Rivers and Delineation of Watershed

The Colorado River WEAP Model streams/rivers with corresponding Planning Area are shown in Table A-CR2.

244004							
PA1001	PA1002	PA1003	PA1004	PA1005	PA1006		
Streams	Streams	Streams	Streams	Streams	Streams		
Watson Wash	Whitewater River	Unnamed River 9023	Caruthers Creek	Coyote Creek	Salton Sea		
Homer Wash	Snow Creek	Corn Springs Wash	Chemehuevi Wash	San Filipe Creek	Alamo River		
South Ward Valley Drainage	Tahquitz Creek	Little Maria Mountains Drainage	Copper Basin Wash	Carrizo Wash	Chocolate Mountains Drainage		
Bristol Dry Lake Drainage	Deep Creek	Ship Creek	Whipple Mountains Drainage	Borrego Palm Creek	New River		
Dale Dry Lake Drainage	Red Canyon Drainage	Pinto Wash	Lost Lake Drainage	Vallecito Creek			
Unnamed Drainage 9003	Mission Creek		Arroyo Seco Milpitas Wash	West Salton Sea Drainage			
Homestead Drainage	Chino Canyon Creek		Carrizo Wash				
Lavic Dry Lake Drainage	Palm Canyon Creek		Senator Wash				
Emerson Dry Lake Drainage	Cottonwood Mountains Drainage		Piute Wash				
Pipes Creek			Parker Dam Drainage				
Arrastre Creek			Bowmans Wash				
Lucerne Dry Lake Drainage			Vidal Wash				
Orange Blossom Wash			Palo Verde Valley Drainage				
Unnamed River 8972			Vinagre Wash				
Unnamed River 9004			Ferguson Wash				
Unnamed River 8995			Picacho Wash				
Twentynine Palms Drainage							
Mesquite Dry Lake Drainage							
Deadman Dry Lake Drainage							
Galway Dry Lake Drainage							
Pipes Wash							
Bighorn Mountains							
Drainage							
Unnamed Stream 8997							
Silver Creek							

Table A-CR2. Colorado River Streams/Rivers

Watersheds in Colorado River were delineated to determine the runoff from each stream using the procedures described in the <u>WEAP Model Methodology section</u>.

Reservoir

The Salton Sea was modeled as a reservoir in the Colorado River HR WEAP model. No other reservoirs were modeled.

Demands

The Colorado River demands were determined using the procedures described in the <u>WEAP Model</u> <u>Methodology section</u> and described in the following sections.

Urban Indoor Demand

The Urban Indoor Annual Activity Level and Annual Water Use Rate for each Planning Area are shown in Table A-CR3.

	PA 10	001	PA 10	02	
Category	Annual Activity Level (person/household)	Annual Water Use Rate (TAF per person/household)	Annual Activity Level (person/household)	Annual Water Use Rate (TAF per person/household)	
Commercial	12008	0.000084	193323	0.000084	
Industrial	0	0.000097	13704	0.000097	
Multi-Family	3631	0.000217	36645	0.000217	
Single-Family	10288	0.000226	103815	0.000226	
	PA 10	003	PA 10	04	
Category	Annual Activity Level (person/household)	Annual Water Use Rate (TAF per person/household)	Annual Activity Level (person/household)	Annual Water Use Rate (TAF per person/household)	
Commercial	2402	0.000084	25816	0.000084	
Industrial	0	0.000097	0	0.000097	
Multi-Family	330	0.000217	2311	0.000217	
Single-Family	935	0.000226	6547	0.000226	
	PA 10	005	PA 1006		
Category	Annual Activity Level (person/household)	Annual Water Use Rate (TAF per person/household)	Annual Activity Level (person/household)	Annual Water Use Rate (TAF per person/household)	
Commercial	1801	0.000084	27618	0.000084	
Industrial	0	0.000097	979	0.000097	
Multi-Family	1321	0.000217	15186	0.000217	
Single-Family	3741	0.000226	43022	0.000226	

Urban Outdoor Demand

The acres for each land use class by Planning Area are shown in Table A-CR4.

Land Use Class	PA 1001 Acres	PA 1002 Acres				
Commercial	248	4,375				
Multi-Family	91	920				
Public	102	24,160				
Single-Family	818	8,271				
Total	1,259	37,726				
Land Use Class	PA 1003 Acres	PA 1004 Acres				
Commercial	97	682				
Multi-Family	1	52				
Public	122	109				
Single-Family	8	468				
Total	228	1,311				
Land Use Class	PA 1005 Acres	PA 1006 Acres				
Commercial	56	669				
Multi-Family	16	214				
Public	401	540				
Single-Family	148	1,926				
Total	621	3,349				

Table A-CR4. Urban Outdoor Land Use Class Acres

Agricultural Demand

The acres for each crop type by Planning Area are shown in Table A-CR5. Agricultural demands generated using these acreage values produced about half of the demand found in the California Water Plan. Agricultural demands were artificially increased to match the water plan.

	PA 1001	PA 1002	PA 1003	PA 1004	PA 1005	PA 1006
	Acres	Acres	Acres	Acres	Acres	Acres
Crop	(thousand)	(thousand)	(thousand)	(thousand)	(thousand)	(thousand)
Grain	0.08	-	-	5.76	0.66	55.62
Rice	-	-	-	-	-	-
Cotton	-	-	-	10.18	-	3.2
Sugar Beet	-	-	-	-	-	26.1
Corn	-	2.9	-	2.5	0.34	8.46
Dry Bean	-	-	-	0.08	-	0.14
Safflower	-	-	-	-	-	0.4
Other Field	0.1	0.6	-	8.73	0.8	58.44
Alfalfa	0.78	0.5	-	52.55	1.5	138.1
Pasture	0.02	2.78	-	6.72	-	71.3
Processed			-	-	-	-
Tomato	-	-				
Fresh Tomato	-	0.14	-	-	-	0.14
Cucurbits	0.02	1.1	-	4.57	0.8	9.23
Onion and Garlic	-	0.2	-	0.4	0.74	8.17
Potato	-	0.65	-	-	0.2	1.2
Other Truck	0.01	24.4	-	13.48	2.1	72.92
Almond and			-	-	-	-
Pistachio	0.04	-				
Other Deciduous	0.06	0.23	-	0.02	-	0.06
Sub-Tropical	0.41	18.5	0.44	4.94	2.95	5.76
Vine	0.78	11.96	-	-	-	-
Total	2.3	63.96	0.44	109.93	10.09	459.24

Table A-CR5. Crop acres by Crop Type

Calibration

The Colorado River WEAP Model was calibrated using the procedures described in the <u>WEAP Model</u> <u>Methodology section</u>.

Calibration Data Collection

Calibrated Watersheds with corresponding gage information are shown in Table A-CR6.

Gage Name	Site	Drainage Area	Gage Flow	Gage Flow			
Cage Name	Number	(Square Miles)	Starting Date	Ending Date			
PIPES C NR YUCCA VALLEY CA	10260200	15.1	1958	1971			
CARUTHERS C NR IVANPAH CA	9423350	0.84	1963	2016			
SNOW C NR WHITE WATER CA	10256500	10.9	1921	2016			
MISSION C NR DESERT HOT SPRINGS CA	10257600	35.6	1967	2016			
CHINO CYN C NR PALM SPRINGS CA	10257710	3.84	1974	1985			
ANDREAS C NR PALM SPRINGS CA	10259000	8.65	1948	2016			
PALM CYN C NR PALM SPRINGS CA	10258500	93.1	1930	2016			
DEEP C NR PALM DESERT CA	10259200	30.6	1962	2016			

Table A-CR6.	Calibrated	Gage	Locations
	cambratea	Cubc	Locations

Water Available for Replenishment Information and Estimates

TAHQUITZ C NR PALM SPRINGS CA	10258000	16.9	1947	2016
COYOTE C NR BORREGO SPRINGS CA	10255800	144	1950	1983
BORREGO PALM C NR BORREGO SPRINGS CA	10255810	21.8	1950	2016
SAN FELIPE C NR JULIAN CA	10255700	89.2	1958	1983
VALLECITO C NR JULIAN CA	10255850	39.7	1963	1983

Calibration Results

Calibrated Watersheds with corresponding NSE and PBIAS are shown in Table A-CR7.

Stream Gage Name and River Name	Nash Sutcliffe Coefficient of Efficiency (NSE)	Percent Bias (PBIAS)
Pipes Creek @ Yucca		
Valley	0.14	15.97
Caruther C @ Ivanpah	0.28	7.95
Snow C @ White Water	0.66	-2.81
Mission C @ Desert Hot		
Springs	0.32	5.01
Chino Canyon C @ Palm		
Springs	0.61	4.99
Andreas C @ Palm Springs	0.71	-1.32
Palm Canyon C @ Palm		
Springs	0.61	-2.76
Deep C @ Palm Desert	0.65	-8.88
Tahquitz @ Palm Springs	0.44	7.54
Coyote C @ Borrego		
Springs	0.46	-0.64
Borrego Palm @ Borrego		
Springs	0.63	-7.05
San Filipe C @ Julian	0.35	21.63
Vallecito C @ Julian	-0.11	-3.96

Table A-CR7. Calibrated Watersheds with corresponding NSE and PBIAS

Water Available for Replenishment Information and Estimates

WEAP Outflow

The WEAP outflow for Colorado River HR, PA 1001, PA 1002, PA 1003, PA 1004, PA 1005, and PA 1006 is shown in Table A-CR8.

Geographical Region	Outflow (MAF)
Colorado River HR*	0.81
PA 1001	0.001
PA 1002	0.40
PA 1003	0.0001
PA 1004	0.03
PA 1005	0.12
PA 1006	0.27

Table A-CR8. Colorado River, PA 1001, PA 1002, PA 1003, PA 1004, PA 1005, and PA 1006 WEAP Outflow

*Please note the sum of the Planning Area outflow does not equal the hydrologic region outflow; since the multiple rivers/streams flow through multiple Planning Areas, the outflow from an upstream Planning Area may be double counted in the outflow for a downstream Planning Area. For this reason, adding the outflow from all the Planning Areas will not equal the Colorado River HR outflow.

WAFR Fraction

The following sections describe how the WAFR Fraction was determined for Colorado River, PA 1001, PA 1002, PA 1003, PA 1004, PA 1005, and PA 1006.

Water Available for Replenishment Information and Estimates

Gage Data

Limited gage data existed for Colorado River HR therefore the South Lahontan HR WAFR Fraction was used. The same WAFR Fraction is also used for PA 1001, PA 1002, PA 1003, PA 1004, PA 1005, and PA 1006.

Hydrologic	Lower Sensitivity Range Estimate	Best Estimate	Upper Sensitivity Range Estimate	Maximum Project Estimate
Region	WAFR Fraction (%)	WAFR Fraction (%)	WAFR Fraction (%)	WAFR Fraction (%)
Colorado River*	10.22%	16.3%	19.8%	45.88%

*Colorado River HR uses the same WAFR Fraction as South Lahontan HR due to limited gage data in Colorado River HR.

Final WAFR Estimates

The outflow estimate simulated using the WEAP model was then multiplied by the range of water available for replenishment fractions determined by the historical gage data to determine the estimated range of WAFR estimates within the hydrologic region. The array of estimates for the Colorado River HR, PA 1001, PA 1002, PA 1003, PA 1004, PA 1005, and PA 1006 are shown in Table A-CR10 using the WEAP outflow from Table A-CR8 and water available for replenishment fractions from Table A-CR9 above.

Geographical Region	WEAP Outflow (maf)	No Project Estimate (taf)	Lower Sensitivity Range Estimate (maf, WAFR Fraction 10.22%)	Best Estimate (maf, WAFR Fraction 16.3%)	Upper Sensitivity Range Estimate (maf, WAFR Fraction 19.8%)	Maximum Project Estimate (maf, WAFR Fraction 45.88%)
Colorado River						
HR*	0.81	0	0.083	0.13	0.161	0.372
PA 1001	0.001	0	0.0	0.0002	0.0	0.0
PA 1002	0.4	0	0.041	0.07	0.079	0.183
PA 1003	0.0001	0	0.0	0.0	0.0	0.0
PA 1004	0.03	0	0.003	0.004	0.005	0.012
PA 1005	0.12	0	0.012	0.02	0.024	0.055
PA 1006	0.27	0	0.027	0.04	0.053	0.122

Table A-CR10.	Final W	AFR Estimates
---------------	---------	---------------

*Please note the sum of the Planning Area outflow does not equal the hydrologic region outflow; since multiple rivers/streams flow through multiple Planning Areas, the outflow from an upstream Planning Area may be double counted in the outflow for a downstream Planning Area. For this reason, adding the outflow from all the Planning Areas will not equal the Colorado River HR outflow. Also, for this same reason, adding the WAFR from all the Planning Areas will not equal the Colorado River HR WAFR.

Potential Water Development by Other Methods (recycled water, desalination and water conservation)

Estimates of potential water development by other methods (recycled water, desalination and water conservation) are also shown for Colorado River hydrologic region in Table A-CR11. Note that these estimates were not specifically made for use for groundwater replenishment and will need to be considered by GSAs more thoroughly for such purpose.

Method	Volume of Water Increase from 2010 to 2020
Recycle	0.01 maf
Desalination	0 maf
Conservation	0 maf

Table A-CR11. Colorado River Urban Water Portfolio Actions

References

- 1. User Guide. Water Evaluation and Planning System (WEAP). SEI. 2015.
- 2. Technical Memorandum: Integrated Scenario Analysis for the 2009 California Water Plan Update. DWR. February 2010.
- 3. Central Coast. Volume 2. California Water Plan Update 2013. DWR. 2013.
- 4. PRISM. <u>http://www.prism.oregonstate.edu/</u>. PRISM Climate Group.
- 5. National Land Cover Database. <u>https://www.mrlc.gov/nlcd2011.php</u>. 2011.
- 6. Hydrologic Unit Maps. <u>http://water.usgs.gov/GIS/huc.html</u>. USGS.
- 7. Fully Appropriated Streams. State Water Resources Control Board. <u>http://www.waterboards.ca.gov/waterrights/water_issues/programs/fully_appropriated_streams/</u>
- 8. Instream Flow Regimens for Fish, Wildlife, Recreation and Related Environmental Resources. Donald Leroy Tennant. January 2011.
- 9. Policy for Maintaining Instream Flows in Northern California Coastal Streams. Division of Water Rights. State Water Resources Control Board. February 2014.