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Foreword  

This is the 43rd annual progress report of the California Department of 

Water Resources’ San Francisco Bay-Delta Evaluation Program, which is 

carried out by the Delta Modeling Section. This report is submitted annually 

to the State Water Resources Control Board pursuant to its Water Right 

Decision D-1485, Term 9, which is still active pursuant to its Water Right 

Decision D-1641, Term 8. 

This report documents progress in the development and enhancement of 

computer models for the Delta Modeling Section of the Bay-Delta Office. It 

also reports the latest findings of studies conducted as part of the program. 

This report was compiled under the direction of Nicky Sandhu, Program 

Manager for the Bay-Delta Evaluation Program. 

Online versions of previous annual progress reports are available at:  

https://www.water.ca.gov/Library/Modeling-and-Analysis. 

For more information, contact:  

Nicky Sandhu, Supervising Engineer 

Delta Modeling Section 

Bay-Delta Office 

California Department of Water Resources 

Prabhjot.Sandhu@water.ca.gov 

(916) 902-9945 

  

https://www.water.ca.gov/Library/Modeling-and-Analysis
mailto:Prabhjot.Sandhu@water.ca.gov


Methodology for Flow and Salinity Estimates  43rd Annual Progress Report 

P-ii 

 

  



Methodology for Flow and Salinity Estimates   43rd Annual Progress Report 

P-iii 

Contents 

Foreword P-i 

Contents P-iii 

Preface P-1 

Chapter 1. DSM2 V8.2.0 Calibration P-1 

Chapter 2. DSM2 Georeferenced Grid Maps P-1 

Chapter 3. DSM2 Water Temperature Modeling Input Extension: 1922–2015 P-1 

Chapter 4. South Delta Salinity-Constituent Conversion via Machine Learning P-2 

Chapter 5. Hotstart and Nudging Preprocessors for Bay-Delta SCHISM P-2 

1.1 Introduction 1-1 

1.1.1 Background 1-1 

1.1.2 DSM2 enhancements since its previous release 1-1 

1.1.3 Purpose of DSM2 recalibration 1-2 

1.2 Calibration Setup 1-3 

1.2.1 Observations 1-3 

1.2.2 Calibration and validation periods 1-3 

1.2.3 Calibration metrics 1-4 

1.3 Hydrodynamics calibration and validation 1-6 

1.3.1 Calibration parameter 1-6 

1.3.2 Calibration and validation stations 1-7 

1.3.3 Calibration and validation results 1-9 

1.3.3.1 Flow calibration 1-9 

1.3.3.2 Stage calibration 1-17 

1.3.3.3 Flow and stage validation 1-22 

1.4 Water quality calibration and validation 1-25 

1.4.1 Calibration parameter 1-25 

1.4.2 Calibration and validation stations 1-25 

1.4.3 Calibration and validation results 1-27 

1.4.3.1 Salinity calibration 1-27 

1.4.3.2 Salinity validation 1-35 

1.5 Conclusions 1-38 

1.6 Acknowledgements 1-39 

1.7 References 1-43 



Methodology for Flow and Salinity Estimates  43rd Annual Progress Report 

P-iv 

2.1 Introduction 2-1 

2.2 GIS Layers 2-1 

2.2.1 Channel Layers 2-1 

2.2.1.1 Network Channels Layer 2-2 

2.2.1.2 Centerline Channels Layer 2-2 

2.2.1.3 Centerline Channels Connected to Nodes Layer 2-3 

2.3 Node Layers 2-4 

2.3.1 DSM2 Nodes 2-4 

2.3.2 DSM2 and SMCD Nodes 2-5 

2.3.3 DSM2 and DCD Nodes 2-5 

2.3.4 DCD Only Node 2-5 

2.4 Gate Layers 2-6 

2.4.1 Actual Gate Location Layer 2-6 

2.4.2 Grid Gate Location Layer 2-6 

2.5 Monitoring Station Layer 2-6 

2.6 Reservoir Layer 2-7 

2.7 Reservoir Connections Layer 2-7 

2.8 Workflow 2-8 

2.8.1 Creating DSM2 Channel Shapefiles 2-9 

2.8.1.1 Creating the Centerline Channels WKT file 2-9 

2.8.1.2 Creating the Network Channels WKT file 2-10 

2.8.1.3 Creating the Centerline Channels Connected to Nodes WKT file 2-12 

2.8.2 Creating DSM2 Node WKT files 2-14 

2.8.3 Creating DSM2 Gate WKT files 2-14 

2.8.4 Creating DSM2 Reservoir WKT files 2-14 

2.8.5 Creating DSM2 Reservoir Connection WKT files 2-14 

2.8.6 Creating Monitoring Station WKT file 2-15 

2.8.7 Converting WKT files to GIS Shapefiles 2-15 

2.9 Products 2-22 

2.10 Grid Map Limitations 2-27 

2.11 References 2-28 

3.1 Background 3-1 

3.2 Data requirement 3-1 



Methodology for Flow and Salinity Estimates   43rd Annual Progress Report 

P-v 

3.3 Methodology 3-5 

3.3.1 Meteorological data generation 3-5 

3.3.2 Water temperature boundary generation 3-9 

3.3.3 Effluent boundary generation 3-10 

3.4 Results 3-11 

3.4.1 Meteorological inputs 3-11 

3.4.2 Water temperature boundary 3-15 

3.4.3 Effluent boundary 3-18 

3.5 Summary 3-19 

3.6 Acknowledgements 3-19 

3.7 Data sources 3-20 

3.8 References 3-20 

4.1 Introduction 4-1 

4.2 Methodology 4-1 

4.2.1 Study Locations and Study Dataset 4-1 

4.2.2 Model Development 4-3 

4.2.2.1 Generalized Additive Model 4-5 

4.2.2.2 Decision Trees 4-6 

4.2.2.3 Random Forest 4-6 

4.2.2.4 Artificial Neural Network (ANN) 4-7 

4.3 Results 4-8 

4.3.1 Simulation of Nitrate (NO3-), Potassium (K+), and Boron (B) 4-8 

4.3.2 Model selection and testing under a second scenario 4-9 

4.3.3 Model assessment 4-10 

4.3.4 Testing the selected model on other ion constituents 4-13 

4.4 Summary and Future Work 4-15 

4.5 Acknowledgements 4-16 

4.6 References 4-16 

5.1 Background 5-1 

5.2 Hotstart preprocessor 5-3 

5.2.1 Introduction 5-3 

5.2.2 Methods 5-4 

5.2.3 Hotstart usage 5-5 



Methodology for Flow and Salinity Estimates  43rd Annual Progress Report 

P-vi 

5.2.3.1 Example hotstart YAML files 5-6 

5.2.3.2 Projection 5-7 

5.2.3.3 Modules and variable names 5-8 

5.2.3.4 Centering 5-9 

5.2.3.5 Initializers 5-10 

5.2.4 The auxiliary functions 5-13 

5.3 Nudging preprocessor 5-15 

5.3.1 Introduction 5-15 

5.3.2 Methods 5-16 

5.3.2.1 How nudging is implemented in SCHISM. 5-16 

5.3.2.2 The design of the preprocessor 5-17 

5.3.2.3 Nudging files required to run SCHISM and schism_nudging.py. 5-18 

5.3.3 nudging usage 5-18 

5.3.4 nudging options 5-21 

5.3.4.1 roms option 5-21 

5.3.4.2 obs option 5-22 

References 5-22 

 

 

 



Methodology for Flow and Salinity Estimates   42nd Annual Progress Report 

P-1 

Preface 

Chapter 1. DSM2 V8.2.0 Calibration 

This chapter documents the calibration effort of the latest version of Delta 

Simulation Model 2 (DSM2), V8.2.0. The previous release of the DSM2 model 

(V8.1.2) was modified to enable the use of Delta channel depletion 

estimated by the Delta Channel Depletion model rather than that by the 

Delta Island Consumptive Use model. The flow, stage, and salinity 

simulations from the calibrated DSM2 V8.2.0 were mostly similar to those 

from the previously calibrated DSM2 V8.1.2 but were in better agreement 

with observed data in most cases. In particular, DSM2 v8.2.0 better fit 

observed salinity data during the validation period at most key locations. 

Chapter 2. DSM2 Georeferenced Grid Maps  

This chapter describes the development of georeferenced grid maps for 

DSM2 (Tom et al. 2020). The georeferenced grid maps are stored as GIS 

shapefiles with symbology added to the various features to represent 

channels, nodes, gates, reservoirs, reservoir connections, and monitoring 

stations. The shapefiles are compatible with ArcGIS and QGIS and are 

available on the CNRA Open Data web site. The georeferenced grid maps are 

also available as Portable Document Format (PDF) files.  

The workflow for creating the grid maps is automated as much as possible, 

streamlining updates and the development of new versions. DSM2 is a 1D 

model and uses input derived from georeferenced information rather than 

using georeferenced information directly. Georeferenced grid maps can help 

ensure that the DSM2 input derived from georeferenced information is 

sufficiently accurate.  

The first versions of the DSM2 grid map were created using AutoCAD. Later 

versions created using AutoCAD were exported to PDF files, which were then 

printed on plotter paper. The most recent version created using this method 

dates back to 2002. The first ArcGIS version was created in 2009. 

Chapter 3. DSM2 Water Temperature Modeling Input Extension: 1922–2015 

The water quality module of the Delta Simulation Model II (DSM2 QUAL) was 

previously calibrated and validated from 1990–2008 to simulate water 

temperature in the Sacramento-San Joaquin Delta (Delta) in 2011 
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(Resources Management Associates 2011). In a follow-up study, the 

simulation period was extended to 2012 (Resources Management Associates 

2015). Recently, the Delta Modeling Section (DMS) was tasked to extend the 

water temperature simulation period to water years 1922–2015 to align with 

the current simulation period used by DWR’s water resources planning 

model, CalSim3. 

This chapter describes the input data requirements for modeling Delta water 

temperature via DSM2 QUAL and the methods applied to assemble or derive 

these data for the extended period. 

Chapter 4. South Delta Salinity-Constituent Conversion via Machine Learning 

Electrical Conductance (EC) is a water quality metric typically used to 

represent the salinity level. It can also be used as the predictor for other ion 

constituents, including Total Dissolved Solids (TDS), dissolved chloride (Cl-), 

dissolved sulfate (SO42-), dissolved sodium (Na+), dissolved calcium 

(Ca2+), dissolved magnesium (Mg2+), dissolved nitrate (NO3-), dissolved 

potassium (K+), dissolved bromide (Br-), dissolved boron (B), Alkalinity, and 

hardness in the Delta. These ion constituents are typically treated as water 

quality indicators and can be measured by standard laboratory methods. 

Regression models have also been developed and applied to simulate the 

concentrations of these ion constituents in the Delta (Jung 2000; Suits 

2002; Hutton 2006; Denton 2015). Most recently, the North Central Region 

Office (NCRO) used parametric quadratic regression equations to estimate 

the concentrations of these 12 ion constituents, using EC as the predictor. 

This chapter provides an overview of the study, intended to identify and 

investigate sources of local salt loading in south Delta channels, which 

collected and used grab sample data from 2018–2020 at seven key locations 

in the south Delta (California Department of Water Resources North Central 

Region Office 2021). The goal of the current study is to develop machine 

learning models to emulate the regression equations in the NCRO study to 

simulate ion constituents. The results indicate that machine learning models 

can provide simulations comparable or superior to the regression equations. 

Chapter 5. Hotstart and Nudging Preprocessors for Bay-Delta SCHISM 

This chapter describes the methods and usages of preparing hotstart and 

nudging model input files for the Semi-implicit Cross-scale Hydroinformatics 

Simulation Model (SCHISM), a three-dimensional hydrodynamic and water 
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quality model applied extensively to the Sacramento-San Joaquin River 

Delta.  

The concept of hot-starting SCHISM is to start the model with accurate or 

realistic initial states of temperature, salinity, and other potential water 

quality constituents based on previous model states or observed data. 

Nudging is a process of relaxing the model toward local observations, 

creating final merged fields that reflect both the model dynamics and 

observations. Both developments provide important capability to improve 

SCHISM modeling results and increase flexibility in applying the model. 

The scripts and examples described in this chapter are distributed publicly in 

the subdirectory of a Python preprocessing library on github called schimpy 

(https://github.com/CADWRDeltaModeling/schimpy). 

  

https://github.com/CADWRDeltaModeling/schimpy
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Chapter 1 DSM2 V8.2.0 Calibration  

1.1 Introduction 

1.1.1 Background 

Delta Simulation Model II (DSM2) is a one-dimensional hydrodynamics and 

water quality model applied in historical simulation, real-time forecasting, 

and long-term planning practices in the Sacramento-San Joaquin Delta 

(Delta). DSM2 (Version 8.2) is a key analytical model being used to assess 

possible impacts to Delta conditions from the proposed Delta Conveyance 

Project (DCP), which includes several structural and operational changes to 

the Delta. 

DSM2 relies on two modules, HYDRO and QUAL, to simulate Delta 

hydrodynamics and water quality conditions, respectively. Past DSM2 

calibrations occurred in 1997, 2000, and 2009 (California Department of 

Water Resources 1997; Nader-Tehrani and Shrestha 2000; California 

Department of Water Resources 2009), along with some limited parameter 

fine-tuning when newer versions of DSM2 were released (Liu and Sandhu 

2012; Liang and Suits 2018).  

1.1.2 DSM2 enhancements since its previous release 

The current version of DSM2 (V8.2.0) differs from the previous version, 

V8.1.2 (Liu and Sandhu 2012), mainly because of different Delta channel 

depletion estimates being used by DSM2. Specifically, V8.1.2 uses the Delta 

channel depletions estimated by the Delta Island Consumptive Use (DICU) 

model, while V8.2.0 employs those estimated by the Delta Channel 

Depletion (DCD) model. DICU is a monthly model that divides the Delta into 

142 subareas. It simulates the water entering, leaving, or being stored in 

each of these subareas when estimating the monthly consumptive use of 

water for each subarea. Delta channel depletion for each subarea is then 

assumed to be the same as the consumptive use. In comparison, DCD has 

finer temporal and spatial resolutions that provide simulations on a daily 

scale for 168 subareas in the Delta. DCD also incorporates a number of 

enhancements, including updated parameterization and the addition of 

physical processes to distinguish Delta channel depletions from consumptive 

use (Liang and Suits 2017, 2018).  
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1.1.3 Purpose of DSM2 recalibration 

The previous calibration (California Department of Water Resources 2009) 

used monitoring data up to 2008. Since then, additional flow, stage, and 

salinity measurements have become available, including those during the 

2012–2015 drought. These new data collectively provide a better depiction 

of the current hydrodynamic and water quality conditions in the Delta and 

enable evaluation of model performance during an extreme event. In 

addition, DWR is considering operating the Suisun Marsh Salinity Control 

Gates (SMSCGs) during summer per ITP requirements. Modeling the possible 

impacts of this action on local hydrodynamics and water quality requires 

channel depletion estimates in the Suisun Marsh in addition to the legal 

Delta. The DCD model has been recently extended to cover the Suisun 

Marsh area (Liang 2020). The extended DCD, when coupled with DSM2, 

should enable improved hydrodynamic and water quality simulations in 

Suisun Marsh.  

Considering those observations, it is necessary to recalibrate DSM2 (V8.2.0) 

to reflect revised channel depletion estimates which now include Suisun 

Marsh and additional observed data availability as well as the addition of the 

extended DCD model. For these reasons, DSM2 was recalibrated to ensure 

the adequacy of the model for the DCP Delta analyses. This effort is 

relatively limited when compared with a more comprehensive future 

recalibration of DSM2 planned for the next release (V8.3), which will 

incorporate further model enhancements. 
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1.2 Calibration Setup 

1.2.1 Observations 

Flow, stage, and salinity (represented by electrical conductivity [EC]) 

observations at 15-minute intervals were obtained from multiple sources, 

such as the California Data Exchange Center (CDEC), Division of 

Environmental Services (DES), and the Northern California Regional Office  

(NCRO), for a range of stations in the Delta, as presented in Table 1-A1 of 

Appendix 1-A. These stations were deemed important for DSM2 performance 

evaluation (Sections 3 and 4). The data were quality-controlled before being 

applied in calibration and validation.  

1.2.2 Calibration and validation periods 

The selection of the calibration period was based on:  

1. Data availability. Observed data should faithfully (with minimal missing 

observations) reflect the more recent Delta structural and operational 

conditions. Previous calibrations used flow, stage, and salinity 

observations only up to 2008. The current calibration includes the use 

of more recent observations.  

2. Data representativeness. Observed data should cover a wide range of 

variations in hydrodynamics and salinity, particularly for the latter, 

which typically needs a longer calibration period than the former does. 

Given this, the current calibration includes periods with both high and 

low ranges of flow and salinity.  

With the above considerations, water years 2011–2012 (containing a wet 

year and a below-normal year; Table 1-1) were selected as the calibration 

period for flow and stage, while water years 2010–2017 (containing two wet 

years, three below normal water years, one dry year, and two critical years; 

Table 1-1) were chosen for salinity calibration. The calibrated model was 

then validated using all observations collected since water year 2001, as 

there were notable physical changes to the Delta in early 2000 (e.g., Liberty 

Island flooding). To be specific, the validation period for flow and stage were 

water years 2001–2017. The validation period for salinity were water years 

2001–2009. 
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Table 1-1 Water year type classification in the Sacramento Valley 

Water 
Year 

Sacramento 
Valley* 

Water 
Year 

Sacramento 
Valley* 

Water 
Year 

Sacramento 
Valley* 

2001 D 2007 D 2013 D 

2002 D 2008 C 2014 C 

2003 AN 2009 D 2015 C 

2004 BN 2010 BN 2016 BN 

2005 AN 2011 W 2017 W 

2006 W 2012 BN — — 

*Source: https://cdec.water.ca.gov/reportapp/javareports?name=WSIHIST. 

1.2.3 Calibration metrics 

During the calibration, DSM2 model performance is evaluated both 

quantitatively and qualitatively. A set of quantitative metrics was calculated 

to evaluate the goodness-of-fit between model simulations and the 

corresponding observations. Additionally, visual inspection was conducted to 

compare them qualitatively. Flow and stage simulations were examined on 

both a tidal scale and a net daily scale. For salinity, the evaluation was 

extended to a monthly scale to maintain consistency with previous 

calibration efforts (Nader-Tehrani and Shrestha 2000; California Department 

of Water Resources 2009).  

For flow and stage simulated via DSM2 HYDRO, the metrics were: 

• Visual inspection of instantaneous (15-minute) flow and stage 

simulations against observations. This time series plot provides an 

initial assessment on DSM2 HYDRO’s ability in simulating the 

amplitude, phase, and patterns of variation in flow and stage. For 

brevity, the results are only illustrated over one month from the 

calibration period given the fine timescale (i.e., 15-minute).  

• Visual inspection of Godin-filtered flow and stage simulations against 

observations. This time series plot provides insights on how well the 

model simulates the flow field and water levels over the entire 

calibration period.  

• Visual inspection of tidally averaged flow and stage simulations against 

observations. This scatter plot gives an indication on how modeled 

daily flows and stages compare with the corresponding observations 

(i.e., how close to the 1:1 line). It does not provide any assessment on 

the phase error in simulations. 

https://cdec.water.ca.gov/reportapp/javareports?name=WSIHIST
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• Error in flow/tidal amplitude. This metric measures the differences 

between modeled and observed flow/tidal amplitude. Probability 

density function (PDF) curves showing the occurrence frequency of 

discrepancies in percentage over the calibration period are presented. 

A mean amplitude error is also calculated by averaging all these 

discrepancies during the calibration period.  

• Error in flow/tidal phase. This metric quantifies the differences 

between modeled and observed peak flow or tidal ebb/flood timing. A 

PDF curve showing the differences in minutes over the calibration 

period to indicate whether the model simulations are lagging or 

leading the observations. A mean phase error is also determined by 

averaging all these differences during the calibration period. 

• Mean error in tidally averaged flow and stage. This metric serves as a 

measure of the difference between long-term (over the calibration 

period) average modeled and simulated tidally averaged flow and 

stage data. It shows whether the model has a dry (under-prediction) 

or wet (over-prediction) bias and by how much on average.  

• Root Mean Squared Error (RMSE) of tidally averaged flow and stage. 

This metric allows assessing the average magnitude of the model 

error. Since it takes the square root of the discrepancy between 

modeled and observed data, it implicitly assigns relative higher 

weights to larger errors. This makes it particularly useful when large 

errors are especially undesirable, which is the case for HYDRO-

simulated flow and stage in the current study. But, unlike the mean 

error, the RMSE does not reveal the direction (over or underprediction) 

of the error.  

For salinity (EC) simulated via DSM2 QUAL, the metrics were: 

• Visual inspection of Godin-filtered EC simulation simulations against 

observations. This time series plot provides an initial assessment on 

DSM2 QUAL’s ability to simulate the pattern of variation of EC. 

• Visual inspection of tidally averaged EC simulations against 

observations. This indicates how well DSM2 QUAL simulates EC on a 

daily basis and whether there are seasonal biases over the calibration 

period.  

• Mean error in tidally averaged EC and monthly average EC. This metric 

quantifies the difference between long-term (over the calibration 
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period) simulated and observed EC. It averages the negative (under 

prediction) and positive (over prediction) errors together and may 

result in a smaller error than via other error metrics.   

• Root Mean Squared Error (RMSE) in tidally averaged EC and monthly 

average EC. This metric is complementary to the mean error in the 

sense that it provides a more realistic measure on mode errors 

(particularly for large errors) but does not discern between negative 

(under prediction) and positive (over prediction) errors.  

These calibration metrics were also used in model validation. 

1.3 Hydrodynamics calibration and validation 

1.3.1 Calibration parameter 

The channel roughness coefficient (i.e., Manning’s n) was the main 

parameter for HYDRO calibration. Specifically, Manning’s n values of six 

groups of channels were modified to improve the model’s ability to simulate 

observed flow and stage conditions, including in Sutter Slough and 

Steamboat Slough, the Sacramento River upstream and downstream of 

Delta Cross Channel, Georgiana Slough, Suisun Marsh, and Old River at 

head. The modifications were made progressively (group-by-group), based 

on calibration metrics. After modifying Manning’s n for the final group of 

channels, calibrated flow and stage well resembled corresponding 

observations. Channel ID number and Manning’s n values before and after 

the calibration are tabulated in Table 1-2. 
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Table 1-2 Six groups of channels with modified channel roughness 

Coefficient (Manning’s n) in the current calibration 

Group Name 
Channel 
Number 

Before 
Calibration 

After      
Calibration 

Head of Old River 54–58 0.03 0.025 

Georgiana Slough 366–374 0.028 0.027 

Sutter and Steamboat Sloughs 379 0.025 0.034 

Sutter and Steamboat Sloughs 380–381 0.025 0.032 

Sutter and Steamboat Sloughs 382 0.031 0.038 

Sutter and Steamboat Sloughs 383–384 0.029 0.031 

Sutter and Steamboat Sloughs 388–390 0.036 0.034 

Sacramento River above DCC 410–414 0.028 0.032 

Sacramento River above DCC 415–418 0.028 0.034 

Sacramento River below DCC 422 0.03 0.028 

Sacramento River below DCC 423–429 0.031 0.028 

Sacramento River below DCC 430–433 0.026 0.027 

Sacramento River below DCC 434 0.025 0.027 

Sacramento River below DCC 435 0.015 0.027 

Suisun Marsh 461–462 0.035 0.015 

Suisun Marsh 463–466 0.035 0.04 

Suisun Marsh 470 0.025 0.04 

Suisun Marsh 489–491 0.03 0.015 

Suisun Marsh 516–517  0.021 0.015 

Suisun Marsh 522–523 0.021 0.015 

Suisun Marsh 528 0.03 0.04 

Suisun Marsh 543 0.03 0.04 

1.3.2 Calibration and validation stations 

Table 1-3 lists the locations observed, and modeled data were used for the 

hydrodynamics calibration. A total number of 23 locations for flow and 19 

locations for stage were selected to evaluate the performance of DSM2-

HYDRO in simulating flow and stage. In addition, model-simulated cross-

Delta flow (calculated as the flow difference between RSAC128 and 

RSAC123) is also compared with the corresponding observations. These 

locations are also illustrated in Figure 1-1.  
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Table 1-3 List of locations data was used in hydrodynamics (flow and 

stage) calibration  

DSM2 ID CDEC ID Location Name Flow Stage 

RSAC155 FPT Sacramento River at Freeport X X 

RSAC128 SDC 
Sacramento River above Delta Cross 
Channel 

X X 

RSAC123 GES 
Sacramento River below Georgiana 
Slough 

X — 

RSAC101 SRV Sacramento River at Rio Vista X X 

RSAN087 MSD San Joaquin River at Mossdale — X 

RSAN072 BDT San Joaquin River at Brant Bridge X — 

RSAN063 SJG San Joaquin River at Stockton — X 

RSAN058 RRI Rough and Ready Island X X 

SLTRM004 TSL Three Mile Slough X X 

RSAN018 SJJ San Joaquin River at Jersey Point X X 

RSAN007 ANH San Joaquin River at Antioch  — X 

ROLD074 OH1 Old River at Head X X 

ROLD059 OLD Old River at Tracy Road Bridge — X 

ROLD047 OAD Old river near Delta Mendota Canal — X 

ROLD034 OH4 Old River at Highway 4  X X 

ROLD024 OBI Old River at Bacon Island X X 

HLT_159 HLT Middle River near Holt X — 

CHGRL009 GCT 
Grant Line Canal at Tracy Boulevard 
Bridge 

— X 

Georg_SL GSS Georgiana Slough at Sacramento River X X 

SLMZU011 BDL Montezuma Slough at Beldon Landing — X 

SLDUT007 DSJ Dutch Slough X X 

SLMZU025 NSL Montezuma Slough at National Steel X X 

FAL FAL False River near Oakley X — 

HOL HOL Holland Cut near Bethel Island X — 

HWB HWB Miner Slough at HWY 84 Bridge X — 

MOK MOK Mokelumne River at San Joaquin River X — 

SSS SSS Steamboat Slough  X — 

SUT SUT Sutter Slough at Courtland X — 

TRN TRN Turner Cut near Holt X — 

CHVCT000 VCU Victoria Canal near Byron X — 

DCC — Cross Delta Flow (RSAC128 - RSAC123)  X — 
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Figure 1-1 Schematic showing locations of modeled and observed 

data used in hydrodynamics calibration and validation  
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1.3.3 Calibration and validation results 

1.3.3.1 Flow calibration  

This section describes flow calibration results at five selected locations. 

These locations include three in the Sacramento River (at Rio Vista, 

Georgiana Slough, and Delta Cross Channel) and two in the San Joaquin 

River (at Three Mile Slough and Jersey Point). Figure 1-2 through Figure 1-6 

show the calibration metrics at these locations, respectively. The calibration 

metrics of the previously calibrated DSM2 (V8.1.2) model are included for 

reference. The results for the remaining flow calibration stations are 
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presented in a separate technical report (California Department of Water 

Resources 2021). 

For Sacramento River locations (Figures 1-2 to 1-3), both the current 

calibration (V8.2.0) and the previous calibration (V8.1.2) well simulated the 

variation pattern, magnitude, and phase in observed flows. The mean errors 

and RMSE values of the tidally averaged flow simulations of the current 

calibration were consistently smaller than those in the previous calibration. 

The most significant difference in mean error was in cross-Delta flow 

(calculated as the difference in the Sacramento River flow above Delta Cross 

Channel and below Georgiana Slough) (Figure 1-4), where the error of the 

current calibration (17.7 cfs) was about half of that in the previous 

calibration (31.8 cfs). The most significant improvement (13 percent 

smaller) in RMSE was in flow at the Georgiana Slough at Sacramento River 

(Figure 1-3). The phase error distribution patterns of both calibration efforts 

were very similar, with the current calibration yielding slightly smaller mean 

phase errors. The distribution patterns of amplitude error were also similar 

from the two calibration efforts; however, the mean amplitude errors were 

noticeably different. For Sacramento River at Rio Vista, the previous 

calibration had smaller amplitude error on average. For Georgiana Slough, 

the current calibration yielded smaller mean errors from the observed.  

Similarly, the current calibration yielded flow simulations at two San Joaquin 

River locations very close to those of the previous calibration (Figures 1-5 

and 1-6). These flows well mimicked the observations on both tidal scale and 

daily scale; however, calibrated V8.1.2 and V8.2.0 performed differently at 

these two locations in terms of statistical metrics derived from tidally 

averaged flows. For Three Mile Slough (Figure 1-5), flows under the current 

calibration had a smaller mean error, smaller average mean amplitude and 

phase errors, but a higher RMSE compared to the previous calibration. Flows 

in the San Joaquin River at Jersey Point showed opposite trends (Figure  

1-6).  

Among all five locations, Three Mile Slough was the only location where 

tidally averaged flow simulations deviated notably from the corresponding 

observations. The linear relationships (with R2 less than 0.6) between 

observed and simulated flow from both calibration efforts at this location 

were considerably weaker than at other selected locations (with R2 over 

0.9). This is partly a result of net tidally averaged flows being much smaller 
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than tidal flows at Three Mile Slough. Looking at the flow time-history, the 

largest discrepancy in flow apparently corresponded to the extreme high 

flow period during Spring 2011. Flow at Rio Vista showed a similar 

discrepancy during the same period. This could indicate an issue with the 

flow boundary conditions used and this issue needs to be revisited in future 

DSM2 model enhancement and calibration efforts.  

Overall, the current calibration yielded satisfactory flow simulations at the 

selected locations. Compared with the previous calibration, the current 

calibration led to improvements in modeled flow at most of these locations; 

however, model performance at some locations (e.g., Three Mile Slough) 

needs to be improved in future model enhancement and calibration efforts.  
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Figure 1-2 Flow calibration metrics for Sacramento River at Rio Vista 
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Figure 1-3 Flow calibration metrics for Georgiana Slough 
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Figure 1-4 Flow calibration metrics for Cross Delta Flow 
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Figure 1-5 Flow calibration metrics for Three Mile Slough 
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Figure 1-6 Flow calibration metrics for San Joaquin River at Jersey 

Point 
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1.3.3.2 Stage calibration  

Stage calibration results at four locations are presented. One flow calibration 

location (Sacramento River at the Delta Cross Channel) is not included here 

as its corresponding flow (cross-Delta flow) is derived from flows at two 

different locations. Results for other stage calibration locations are provided 

in a separate technical report (California Department of Water Resources 

2021).  

Figures 1-7 and 1-8 show stage calibration metrics for Sacramento River at 

Rio Vista and Georgiana Slough, respectively. Both the current calibration 

(V8.2.0) and the previous calibration (V8.1.2) simulated the tidal variation 

pattern well (panel (a) of Figure 1-7) but under-estimated the observed 

stage (panel (b)) at both locations. In comparison, the current calibration 

better matched peak stage at Rio Vista (panel (b)). On a daily scale (panel 

(c)), both calibration efforts yielded stage simulations highly correlated with 

observed stage, with R2 over 0.92 at both locations. In terms of statistical 

metrics, the mean error and RMSE for Rio Vista were smaller in the current 

calibration than in the previous one. The average amplitude error and phase 

error were also smaller in the current calibration. For Georgiana Slough, 

though, the mean error and RMSE for the current calibration were slightly 

higher than for the previous calibration.  

Similar to the performance results at Sacramento River locations, stage 

simulations from both calibration efforts at both San Joaquin River locations 

faithfully mimicked but under-estimated the observed stage (panels (a) and 

(b) in Figures 1-9 and 1-10). On a daily scale (panel (c)), the tidally 

averaged simulated stage aligned very well with the observed stage. The R2 

values between the observed stage and the corresponding stage simulations 

from both calibration efforts at both locations were around 0.95. Both 

calibration efforts had nearly identical mean bias and RMSE values at two 

locations, but the current calibration had smaller amplitude error on 

average. In terms of phase error, though, the previous calibration 

outperformed the current calibration at both locations.   

In general, the calibrated model (V8.2.0) was able to simulate the measured 

stage very well. Its performance was fairly similar or superior to that of the 

previously calibrated model (V8.1.2). There was a consistent dry bias (under 

estimation) in the calibrated model, which will need to be addressed in 

future model development and calibration efforts.  
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Figure 1-7 Stage calibration metrics for Sacramento River at Rio 

Vista 
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Figure 1-8 Stage calibration metrics for Georgiana Slough 
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Figure 1-9 Stage calibration metrics for Three Mile Slough 
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Figure 1-10 Stage calibration metrics for San Joaquin River at Jersey 

Point 
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1.3.3.3 Flow and stage validation 

This section describes statistical metrics of flow and stage simulations during 

the validation periods at the key locations illustrated in the previous two 

sections. Other metrics, including time series plot, scatter plot, distribution 

curves of amplitude, and phase difference are provided in a separate 

technical report (California Department of Water Resources 2021), along 

with validation results at other locations.  

Figure 1-11 presents the mean error (a), RMSE (b), average amplitude error 

(c), and average phase error (d) between simulated and observed flows at 

five selected locations during the validation period. The current calibration 

clearly yielded generally more desirable mean error and RMSE. The only 

exception was that the mean error and RMSE of the current calibration at Rio 

Vista were slightly larger than those from the previous calibration. At 

locations where the observed amplitude was over-estimated (Georgiana 

Slough and cross Delta Cross Channel), the current calibration had 

considerably smaller amplitude error; however, at the other three locations 

where the amplitude was under-estimated in both calibration efforts, the 

current calibration had a notably larger error. In terms of phase error, the 

current calibration had smaller errors at three out of five locations.  
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Figure 1-11 Summary of statistical metrics of flow validation 
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Stage validation metrics at selected locations are illustrated in Figure 1-12. 

Similar to what was noted during the calibration period, both calibration 

efforts (V8.1.2 and V8.2.0) underestimated the observed stage during the 

validation period as well. In comparison, the current calibration had a 

smaller mean error and RMSE at all locations except for Georgiana Slough. 

Additionally, the current calibration had smaller amplitude errors at all four 

locations; however, the results were mixed for phase error. The differences 

in average phase error in both calibration efforts were generally small. The 

largest difference was about four minutes (at Three Mile Slough), while the 

smallest difference was about two minutes (at Georgiana Slough). 
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Figure 1-12 Summary of statistical metrics of stage validation 
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1.4 Water quality calibration and validation 

1.4.1 Calibration parameter 

The channel dispersion factor was the main parameter of QUAL that was 

calibrated. The factor is defined as the dispersion-to-advection ratio in a 

channel. A higher value of the dispersion factor indicates higher mixing and 

thus faster salinity transport. Based on the flow field simulated by the 

calibrated HYDRO, modifications of QUAL dispersion factors were required in 

only a limited number of channels to yield desirable salinity simulations in 

the current calibration. Table 1-4 tabulates the IDs of these channels as well 

as the corresponding modifications in dispersion factors.  

Table 1-4 List of channels with dispersion factors modified in the 

current calibration 

Group Name 
Channel 
Number 

Before 
Calibration 

After 
Calibration 

South Delta 276–279 720 900 

North Delta 47 360 1000 

North Delta 48 260 1000 

North Delta 309–310 360 720 

North Delta 430–432 260 120 

North Delta 433 700 540 

North Delta 434–435 1000 900 

1.4.2 Calibration and validation stations 

A total number of 25 locations were selected in assessing DSM2-QUAL’s 

performance in simulating EC. These locations are listed in Table 1-5 and 

illustrated in Figure 1-13. 
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Table 1-5 List of EC calibration locations 

DSM2 ID CDEC ID Location Name 

RSAC101 RVB Sacramento River at Rio Vista 

RSAC092 EMM Sacramento River at Emmaton  

RSAC081 CLL Sacramento River at Collinsville  

SLTRM004 TSL Three-Mile Slough 

RSAC075 MAL Sacramento River at Mallard Island 

RSAC064 PCT Sacramento River at Port Chicago 

RSAN072 BDT San Joaquin River at Brandt Bridge  

RSMKL008 STI South Fork Mokelumne River at Terminous  

RSAN037 PRI San Joaquin River at Prisoners Point  

RSAN032 SAL San Joaquin River at San Andreas Landing  

RSAN018 SJJ San Joaquin River at Jersey Point  

RSAN007 ANC San Joaquin River at Antioch 

OLD_MID UNI Old River near Middle River  

ROLD059 OLD Old River at Tracy Road Bridge  

SLDUT007 DSJ Dutch Slough 

CHVT000 VCU Victoria Canal near Byron  

CHSWP003 CLC Banks Pumping Plant /Clifton Court Forebay 

CHDMC006 DMC Jones Pumping Plant 

ROLD024 OBI Old River at Bacon Island 

SLMZU025 NSL Montezuma Slough at National Steel 

SLMZU011 BDL Montezuma Slough at Beldon Landing  

SLCBN002 SNC Chadbourne Slough near Sunrise Duck Club 

SLSUS012 VOL Suisun Slough 300 ft south of Volanti Slough 

RSAN058 RRI Rough and Ready Island (SJR)   

SSS SSS Steamboat Slough 
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Figure 1-13 Schematic showing EC calibration and validation 

locations 
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1.4.3 Calibration and validation results 

1.4.3.1 Salinity calibration  

The calibration of QUAL in terms of simulated EC focused on several key 

locations in the Delta, including Emmaton, Jersey Point, Rio Vista, Antioch, 

Old River at Bacon Island, Banks Pumping Plant, and Jones Pumping Plant. 

Calibration metrics, including time series plot of Godin-filtered EC, scatter 

plot of tidally averaged EC, and mean error and RMSE of tidally averaged 

and monthly EC at these locations are illustrated in Figures 1-14 to 1-20. 

Calibration metrics at other EC calibration locations are documented in a 

separate technical report (California Department of Water resources 2021). 
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At Emmaton, both V8.1.2 and V8.2.0 under-estimated EC observations 

(Figure 1-14). The under estimation was particularly evident during the 

period of 2013–2015, which contains two critical years (2014–2015) and one 

dry year (2013). During this period, V8.1.2 largely under-simulated the high 

range salinity while V8.2.0 produced significantly closer simulations. Over 

the entire calibration period, the mean error of V8.1.2 on a daily scale was 

about -200 microsiemens per centimeter (µs/cm) (versus -37 µs/cm of 

V8.2.0). The RMSE (about 646 µs/cm) of V8.1.2 was also notably larger than 

that of V8.2.0 (428 µs/cm). This was also the case on the monthly scale. 

The tidally averaged EC simulations of V8.2.0 also aligned better with 

observations. The R2 of V8.2.0 was 0.92 (versus 0.85 of V8.1.2). Overall, 

the current calibration led to improved EC simulations at Emmaton when 

compared with the previous calibration. Similarly, the current calibration 

improved EC simulations at Rio Vista when compared with the previous 

calibration (Figure 1-15). The mean error and RMSE of the current 

calibration were smaller than their counterparts in the previous calibration at 

both daily and monthly scales. In addition, the current calibration better 

simulated EC during the dry period from 2013–2015. Furthermore, tidally 

averaged EC from the current calibration also aligned better with the 

observations and had a higher R2. 

Similar improvements over the previous calibration were also observed at 

Antioch (Figure 1-16) and Jersey Point (Figure 1-17). The improvements 

were most notable during the period from 2013–2015, when V8.1.2 largely 

over or under-estimated the salinity observed in the field. The statistical 

metrices, including mean error, RMSE, and R2 of V8.2.0 were also more 

desirable. Nevertheless, there were periods when both the current 

calibration and previous calibration performed relatively poorly. For instance, 

in late 2016, both calibration efforts under simulated the observed EC at 

both locations. This could also be the result of inaccuracies in the assumed 

flow boundary conditions and warrants further investigation in future 

calibration efforts. 

For Old River at Bacon Island, both calibration efforts tended to under 

simulate the measured EC field (Figure 1-18). This under prediction was 

particularly pronounced in 2012 and 2016. Likely there were local salinity 

sources (during these two periods at this location) not considered in DSM2. 

The under prediction was also evident in the scatter plot showing tidally 

averaged EC simulations and observations (Panel (b)). When comparing the 
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two calibration efforts, though, the current calibration had more satisfactory 

statistical metrics.  

At both pumping plants, EC was also under-predicted in both calibration 

efforts (Figures 1-19 and 1-20). Compared to the previous calibration, the 

current calibration yielded consistently better statistical metrics at both 

locations, with smaller mean error and RMSE as well as higher R2.  

Overall, the current calibration outperformed the previous calibration in 

terms of providing EC simulations that better matched observed EC at all 

selected locations; however, there was a dry bias (underestimation) in the 

calibrated model. This issue will need to be addressed in future model 

enhancement and calibration efforts. 

Figure 1-14 EC calibration metrics for Sacramento River at Emmaton 
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Figure 1-15 EC calibration metrics for Sacramento River at Rio Vista 
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Figure 1-16 EC calibration metrics for San Joaquin River at Antioch  
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Figure 1-17 EC calibration metrics for San Joaquin River at Jersey 

Point 
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Figure 1-18 EC calibration metrics for Old River at Bacon Island 
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Figure 1-19 EC calibration metrics for Banks Pumping Plant 
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Figure 1-20 EC calibration metrics for Jones Pumping Plant 

 

1.4.3.2 Salinity validation  

As in the flow and stage validation presented in Section 3.3.3, salinity 

validation in this section only showcases statistical metrics at selected 

locations. Detailed time series plots and scatter plots during the validation 

period, along with detailed validation results at other salinity calibration 

locations, are provided in a separate technical report (California Department 

of Water Resources 2021). 

Figure 1-21 shows the mean error and RMSE at the daily and monthly scale 

between observed EC and simulated EC during the validation period. At both 

temporal scales, the magnitudes of mean error associated with both 

calibration efforts were comparable. Compared with V8.1.2, the calibrated 

V8.2.0 had larger mean errors at all locations except for the Banks and 

Jones pumping plants. At those locations, V8.2.0 produced saltier conditions 
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(positive mean error) than the field measurements. At two pumping plants, 

the errors of V8.2.0 simulations were insignificant (with absolute values less 

than 10 µs/cm) and much smaller than their counterparts of V8.1.2.  

The RMSE values also varied largely across different locations. The largest 

values occurred at Emmaton (RSAC092) and Antioch (RSAN007). This was 

expected, as these two locations are relatively saltier than other locations. In 

terms of magnitude, both calibration efforts yield similar RMSE values at 

those locations. In comparison, though, V8.2.0 had relatively smaller RMSE 

at most locations.  

Overall, the calibrated V8.2.0 yielded similar statistical metrics as V8.1.2 at 

the selected locations during the validation period. While V8.2.0 consistently 

outperformed V8.1.2 during the calibration period (Section 4.3.1), this was 

not the case during the validation period. V8.1.2 had smaller mean error for 

most locations, while V8.2.0 produced smaller RMSE values at most 

locations.  
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Figure 1-21 Summary of statistical metrics of EC validation 
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1.5 Conclusions 

The current calibration effort is to prepare a calibrated DSM2 model for 

hydrodynamic and water quality modeling and analysis in the Delta 

Conveyance Project. The previous release of the DSM2 model (V8.1.2) was 

modified to enable use of Delta channel depletion estimated by the Delta 

Channel Depletion model rather than that by the Delta Island Consumptive 

Use model. The hydrodynamics module of the updated model (DSM2 V8.2.0) 

was calibrated using observed flow and stage from water year 2011–2012 

and by varying Manning’s n values in six groups of channels. The module 

was then validated using flow and stage data from water years 2001–2017. 

The water quality module of DSM2 V8.2.0 was calibrated using observed EC 

from water years 2010–2017, and the flow field was simulated via the 

calibrated hydrodynamics module, by modifying the dispersion factors of a 

number of channels. The calibrated water quality module was validated 

using observed and simulated EC from water years 2001–2009.  

The flow, stage, and EC simulations from the calibrated DSM2 V8.2.0 were 

mostly similar to those of the previously calibrated DSM2 V8.1.2 but were in 

better agreement with observed data in most cases. In particular, DSM2 

v8.2.0 better fit observed EC data during the validation period at most key 

locations; however, the calibrated model tended to under-predict the 

observed stage and flow at most key locations examined. These biases need 

to be addressed in future model enhancement and calibration efforts.  
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Appendix 1-A: Inventory of calibration and validation 

stations 

Table 1-A1 List of flow, stage, and salinity stations and the data record periods 

Location ID CDEC ID Location Name Flow Stage EC 

RSAC155 FPT Sacramento River at Freeport 1/2/2000–1/1/2020 1/1/2000–3/26/2020  — 

RSAC128 SDC 
Sacramento River above Delta Cross 
Channel 

12/22/1992–
1/1/2020 10/1/2005–3/26/2020  — 

RSAC123 GES 
Sacramento River below Georgiana 
Slough 1/8/1993–1/1/2020  —  — 

RSAC101 SRV/RVB Sacramento River at Rio Vista 4/20/1995–1/1/2020 10/1/2005–3/26/2020 10/17/2003–1/1/2020 

RSAC092 EMM Sacramento River at Emmaton   —  — 3/27/1999–1/1/2020 

RSAC081 CLL Sacramento River at Collinsville   —  — 5/3/1999–1/1/2020 

RSAC075 MAL Sacramento River at Mallard Island  —  — 1/4/1989–1/1/2020 

RSAC064 PCT Sacramento River at Port Chicago  —  — 1/1/2000–1/1/2020 

RSAN087 MSD San Joaquin River at Mossdale  — 3/1/1983–11/19/2020   

RSAN072 BDT San Joaquin River at Brant Bridge 1/23/2008–1/1/2020  — 4/6/2005–1/1/2020 

RSMKL008 STI 
South Fork Mokelumne River at 
Terminous   —  — 1/1/2000–1/1/2020 

RSAN063 SJG San Joaquin River at Stockton   8/1/2006–5/7/2020  — 

RSAN058 RRI Rough and Ready Island 
1/10/2007–
8/10/2018 9/30/2005–8/4/2020 8/30/2000–1/1/2020 

SLTRM004 TSL Three Mile Slough 2/14/1997–1/1/2020 3/1/2005–3/26/2020 6/16/2008–1/1/2020 

RSAN037 PRI San Joaquin River at Prisoners Point   —  — 6/27/2006–1/1/2019 

RSAN032 SAL 
San Joaquin River at San Andreas 
Landing   —  — 3/27/1999–1/1/2020 

RSAN018 SJJ San Joaquin River at Jersey Point 5/11/1994–1/1/2019 10/1/2005–3/26/2020 3/26/1999–1/1/2020 
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Location ID CDEC ID Location Name Flow Stage EC 

RSAN007 ANC San Joaquin River at Antioch   — 10/1/1982–12/2/2020 1/1/2000–8/1/2018 

OLD_MID UNI Old River near Middle River   —  — 3/27/1999–1/1/2020 

ROLD074 OH1 Old River at Head 2/7/2000–1/1/2000 10/1/1982–5/4/2020  — 

ROLD059 OLD Old River at Tracy Road Bridge  — 
10/1/1982–
10/26/2020 4/6/2005–1/1/2020 

ROLD047 OAD Old river near Delta Mendota Canal  — 10/1/1991–11/6/2020  — 

ROLD034 OH4 Old River at Highway 4  1/1/2000–1/1/2020 10/1/2005–5/7/2020  — 

ROLD024 OBI Old River at Bacon Island 1/6/1987–1/1/2020 9/27/2005–5/7/2020 3/8/2000–1/1/2020 

HLT_159 HLT Middle River near Holt 1/9/1987–1/1/2020  —  — 

CHGRL009 GCT 
Grant Line Canal at Tracy Boulevard 
Bridge  — 10/1/1982–9/4/2020  — 

Georg_SL GSS Georgiana Slough at Sacramento River 9/17/2001–1/1/2020 10/1/2005–3/26/2020  — 

SLMZU011 BDL Montezuma Slough at Beldon Landing   10/1/1998–1/1/2020 1/1/1989–1/1/2020 

SLDUT007 DSJ Dutch Slough 2/9/1996–1/1/2020 10/1/2005–5/7/2020 12/9/2009–1/1/2020 

SLMZU025 NSL National Steel 1/16/2008–1/1/2020 5/21/2009–1/1/2020 9/16/2001–1/1/2020 

CHVCT000 VCU Victoria Canal near Byron  2/15/2006–1/1/2020  — 6/26/2007–1/1/2020 

CHSWP003 CLC 
Banks Pumping Plant /Clifton Court 
Forebay  —  — 

12/30/2000–
12/31/2019 

CHDMC006 DMC Jones Pumping Plant  —  — 3/27/1999–1/1/2020 

SLCBN002 SNC 
Chadbourne Slough near Sunrise Duck 
Club  —  — 9/16/2001–1/1/2020 

SLSUS012 VOL 
Suisun Slough 300 ft south of Volanti 
Slough  —  — 2/28/2008–1/1/2020 

SLBAR002 BKS Barker Slough at North Bay Aqueduct  —  — 1/1/2001–1/1/2020 

FAL FAL False River near Oakley 8/9/2007–1/1/2020  —  — 

FCT_280 FCT Fisherman's Cut 6/24/2015–1/1/2020  —  — 

HOL HOL Holland Cut near Bethel Island 
10/23/2007–
1/1/2020  —  — 

HWB HWB Miner Slough at HWY 84 Bridge 5/17/2006–1/1/2019  —  — 
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Location ID CDEC ID Location Name Flow Stage EC 

MOK MOK Mokelumne River at San Joaquin River 2/9/2007–1/1/2020  —  — 

PDC PDC Paradise Cut 4/16/2014–1/1/2019  —  — 

SSS SSS Steamboat Slough  9/26/2003–1/1/2019  — 5/22/2014–5/5/2016 

SUT SUT Sutter Slough at Courtland 
12/11/2006–
1/1/2020  —  — 

TRN TRN Turner Cut near Holt 2/15/2006–1/1/2020  —  — 
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Chapter 2 DSM2 Georeferenced Grid 

Maps 

2.1 Introduction  

This chapter describes the development of georeferenced grid maps for the 

Delta Simulation Model 2 (DSM2) (Tom et al. 2020). The georeferenced grid 

maps are stored as GIS shapefiles with symbology added to the various 

features to represent channels, nodes, gates, reservoirs, reservoir 

connections, and monitoring stations. The shapefiles are compatible with 

ArcGIS and QGIS and are available on the CNRA Open Data web site. The 

georeferenced grid maps are also available as Portable Document Format 

(PDF) files.  

The workflow for creating the grid maps is automated as much as possible, 

streamlining updates and the development of new versions. DSM2 is a 1D 

model and uses input derived from georeferenced information rather than 

using georeferenced information directly. Georeferenced grid maps can help 

ensure that the DSM2 input derived from georeferenced information is 

sufficiently accurate.  

The first versions of the DSM2 grid map were created using AutoCAD. Later 

versions created using AutoCAD were exported to PDF files, which were 

printed on plotter paper. The most recent version created using this method 

dates back to 2002. The first ArcGIS version was created in 2009. 

2.2 GIS Layers 

This section describes how DSM2 model features are represented in the GIS 

layers included in the georeferenced grid maps, including symbology. In 

each of the georeferenced grid maps, the display of each layer can be 

toggled on or off. Each subsection below identifies the default display setting 

of the layer in the georeferenced grid maps. 

2.2.1 Channel Layers 

The grid maps include three layers to represent DSM2 channels. Each layer 

represents different channel attributes, as described in the following 

subsections.  
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2.2.1.1 Network Channels Layer 

Most users will probably want to use the Network Channels layer, which is 

designed to show connectivity to nodes and is most similar to the channel 

representations used in most previous grid map versions. This layer uses 

mostly straight lines to represent channels, with additional line segments 

added as needed to prevent overlapping with other channels or other 

features such as node symbols (see Figure 2-1, channels 296 and 301). The 

lines are colored black, with inline arrows indicating positive flow direction, 

and offset numbers indicating the DSM2 channel number. This layer is 

displayed by default in DSM2 georeferenced grid maps. 

Figure 2-1 The Network Channels Layer uses mostly straight lines to 

represent channels 

 

Note: Some channels are edited to prevent overlap or to improve appearance. 

2.2.1.2 Centerline Channels Layer 

The Centerline Channels layer is created directly from the Cross-Section 

Development Program (CSDP) centerlines, which sometimes have endpoints 

that are not located at the nodes. Endpoints for some centerlines are placed 

away from the nodes because CSDP centerlines are intended to represent a 

portion of the volume of a physical channel, and placing all centerline 

endpoints at nodes would result in overlapping volumes in some areas (Tom 

et al. 2020). Figure 2-2 shows a number of centerline channels with 

endpoints located away from nodes for this reason. The lines are colored 

dark green, with inline arrows indicating positive flow direction and offset 
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numbers indicating the DSM2 channel number. This layer is not displayed by 

default in DSM2 georeferenced grid maps. 

Figure 2-2 The centerline channels layer is created from the CSDP 

centerlines 

 

2.2.1.3 Centerline Channels Connected to Nodes Layer 

The Centerline Channels Connected to Nodes Layer (Figure 2-3) is the same 

as the Centerline Channels Layer, but with line segments added to connect 

the endpoints to the nodes. This layer is only intended for use as a reference 

when using the Particle Tracking Model (PTM) Animator to display model 

results. The lines are colored light green, with inline arrows indicating 

positive flow direction and offset numbers indicating the DSM2 channel 

number. This layer is not displayed by default in DSM2 georeferenced grid 

maps. 
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Figure 2-3 The Centerline Channels Connected to Nodes layer is 

created by adding extra line segments to connect CSDP centerlines 

to nodes 

 

2.3 Node Layers 

The DSM2 georeferenced grid maps include four different node layers, each 

colored differently to identify the model or models that use the nodes. The 

models identified include DSM2, the Delta Channel Depletion Model (DCD), 

and the Suisun Marsh Channel Depletion Model (SMCD). The colors that are 

used to differentiate the node layers identified in each subsection below are 

applied to the symbol outline and text only. All node symbols have white 

backgrounds, making the node numbers easier to read, but these sometimes 

obscure the features beneath. Users who are unable to distinguish the colors 

used by these layers will need to display one layer at a time to determine 

which model(s) use the node(s) in the layer. All nodes are represented by 

circles with the node number in the middle. All node layers are displayed by 

default in DSM2 georeferenced grid maps. Example node layers are 

displayed in Figure 2-4. 

2.3.1 DSM2 Nodes 

The DSM2 Nodes layer includes all nodes used by the DSM2 model, and its 

color is black. All other layers are displayed on top of this layer, so that the 

colors displayed will always correctly identify which model(s) use the 

node(s).  
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2.3.2 DSM2 and SMCD Nodes 

This layer includes all nodes that are used by the Suisun Marsh Channel 

Depletion Model (SMCD), and its color is green. All SMCD nodes are also 

DSM2 nodes. This layer is called DSM2 and SMCD Nodes so that it can be 

displayed on top of the DSM2 nodes layer, correctly identifying the nodes as 

belonging to both models.  

2.3.3 DSM2 and DCD Nodes 

This layer includes all nodes that are used by the Delta Channel Depletion 

Model (DCD), and its color is brown. All DCD nodes are also DSM2 nodes. 

This layer is called DSM2 and DCD Nodes so that it can be displayed on top 

of the DSM2 nodes layer, correctly identifying the nodes as belonging to 

both models.  

2.3.4 DCD Only Node 

The DCD Only Node layer contains the node that is used only by DCD, and 

not by DSM2, and its color is pink. 

Figure 2-4 Node layers are colored to identify which model(s) use 

the nodes 
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2.4 Gate Layers 

DSM2 requires gates to be located at the ends of channels. This often results 

in differences between the locations of gates in the model grid and their 

actual locations. This section describes the two layers used to represent the 

approximate actual location and approximate grid location of each gate 

(Figure 2-5). 

2.4.1 Actual Gate Location Layer 

The Actual Location layer uses a dot symbol (see Figure 2-5 for an example 

representing station “7_mile@sjr”) to represent the approximate location of 

the physical structure that each DSM2 gate represents. This layer is not 

displayed by default in DSM2 georeferenced grid maps. 

2.4.2 Grid Gate Location Layer 

The Grid Location layer uses a double-line gate symbol (See Figure 2-5 for 

an example). In DSM2, the gates are located at the end of a channel. In 

GIS, we place the symbol near the end of the channel, to avoid interference 

with the display of the node symbol. This layer is displayed by default in 

DSM2 georeferenced grid maps. 

Figure 2-5 Actual versus Grid gate location 

 

2.5 Monitoring Station Layer 

The monitoring station layer is labeled by default with station identifiers that 

are based on the station codes used by the California Data Exchange Center 

(CDEC) (Figure 2-6). For stations not on CDEC, the identifier may be an 

identifier used by the operating agency or a mnemonic.  
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Sometimes you will see more than one station at the same location. This 

means there are different agencies operating near to one another, each with 

its own station identifiers and data distribution system. They may or may 

not be sharing facilities and telemetry.  

The layer is created from a list that is maintained by the Delta Modeling 

Section of the California Department of Water Resources’ Bay-Delta Office. 

We try to keep this list accurate and up to date, but we are not always 

informed when new stations begin operating. Consequently, we cannot 

promise that our list will always be up to date, and we cannot promise that 

the station layer on our grid maps will always be up to date.  

2.6 Reservoir Layer 

The Reservoir layer displays DSM2 reservoirs as red circles with white 

backgrounds, with the reservoir name in the middle (Figure 2-6). Depending 

on the size of the circle, the reservoir name may be abbreviated. 

Figure 2-6 The Monitoring Station, Reservoir, and Reservoir 

Connections layers 

 

2.7 Reservoir Connections Layer 

The reservoir connections layer consists of straight dashed blue lines that 

show connectivity of DSM2 reservoirs to nodes (Figure 2-6). 
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2.8 Workflow 

For DSM2 v8.2, the process of creating georeferenced grid maps has mostly 

been automated. The workflow (Figure 2-7) for creating the grid maps 

begins with the CSDP, which is the tool used to create DSM2 geometry (Tom 

1998). All editing of features, including channels, nodes, gates, and 

reservoirs, occurs in the CSDP. This process helps ensure that the shapefiles 

match the geometry input used by DSM21. The process also makes creating 

updates and new versions easier and less error prone. 

To create DSM2 grid maps from CSDP data, the following process is used: 

(1) Use the CSDP to export CSDP data to Well-Known Text (WKT) files, (2) 

Use QGIS to convert the WKT files to GIS shapefiles, (3) Use GIS to add 

symbology and create the georeferenced grid maps, which are in the form of 

GIS map packages and PDF documents. The DSM2 georeferenced grid maps 

are available on the CNRA open data web site at 

https://data.cnra.ca.gov/dataset/dsm2-georeferenced-model-grid. 

Figure 2-7 Workflow for creating DSM2 georeferenced grid maps 

 

 

1 For DSM2 v8.2 and prior versions, channel lengths do not always match centerline lengths. This discrepancy will 
be corrected in later versions. 

https://data.cnra.ca.gov/dataset/dsm2-georeferenced-model-grid
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2.8.1 Creating DSM2 Channel Shapefiles 

This section describes the process exporting CSDP data to GIS shapefiles. 

First, bathymetry, channel network, and node landmark files are loaded in to 

the CSDP (Tom 1998). 

2.8.1.1 Creating the Centerline Channels WKT file 

After loading a CSDP network file, in the CSDP menu bar, select Network-

Export-Export to WKT format for GIS (Figure 2-8a). In the dialog that 

appears (Figure 2-8b), click Select File to specify the name and location of 

the WKT file to be created. Make sure the two checkboxes in the dialog are 

unchecked, then click ok.  
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Figure 2-8a Using the CSDP to export to a network file to a WKT file 

 

 

Figure 2-8b CSDP Export Network to WKT for importing into GIS 

dialog 

2.8.1.2 Creating the Network Channels WKT file 

To create a Network Channels WKT file, you do not need to have a CSDP 

network file loaded. Instead, you will use the CSDP to create new straight 

line (consisting of two endpoints and no other points) CSDP centerlines, 

using the information from a CSDP landmark file containing node 

coordinates, and a DSM2 channel connectivity input file (such as 

channel_std_grid_delta.inp). 
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In the CSDP menu bar, select Create centerlines for all DSM2 chan (Figure 

2-9a). If you have not already loaded a DSM2 channel connectivity file, a 

dialog will appear asking you to specify a file (Figure 2-9b). Select a file that 

matches the channel network in the currently loaded network file and click 

Open. Channels consisting of straight lines connected to the nodes will be 

created (Figure 2-9c). Edit channel centerlines as needed to prevent 

overlapping features and to create the desired appearance.  

Create the WKT file using the procedure described at the end of Section 

2.8.1.1. 

Figure 2-9a Using the CSDP to create the Network Channels network 

file 

 

 

  

Figure 2-9b Using the file selector dialog to load a DSM2 channel 

connectivity file 
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Figure 2-9c Network channels automatically created by CSDP 

 

2.8.1.3 Creating the Centerline Channels Connected to Nodes WKT file 

To create a Centerline Channels Connected to Nodes WKT file, you must first 

have CSDP bathymetry, network, and node landmark files loaded into the 

CSDP. Select Tools-Extend Centerlines to Nodes (Figure 2-10a). If you have 

not already loaded a DSM2 channel connectivity file, you will be prompted to 

load one (Figure 2-10b). After loading the file, the CSDP will automatically 

add line segments to the upstream and downstream ends of each centerline, 

connecting each to their respective nodes, and display a confirmation dialog 

(Figure 2-10c). If you do not see the confirmation dialog, there may be a 

problem with the channel connectivity file.  

Create the WKT file using the procedure described at the end of section 

2.8.1.1. 
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Figure 2-10a Creating the Centerline Channels Connected to Nodes 

layer by extending centerlines to nodes 

 

 

 

 

Figure 2-10b Using the file selector dialog to load a DSM2 channel 

connectivity file 

Figure 2-10c This dialog confirms that centerlines have successfully 

been extended to nodes 
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2.8.2 Creating DSM2 Node WKT files 

DSM2 nodes are stored in CSDP landmark files. After loading a CSDP 

landmark file using Landmark-Open Landmark File, select Landmark-Export 

to WKT Format for GIS (Figure 2-11). In the file selector dialog that appears, 

enter the name of the WKT file you wish to create. 

Figure 2-11 Exporting Landmark data to a WKT file 

 

2.8.3 Creating DSM2 Gate WKT files 

DSM2 gate coordinates are stored in CSDP landmark files. Follow the 

instructions in Section 2.8.2 to load a CSDP gate landmark file and to create 

a WKT file. 

2.8.4 Creating DSM2 Reservoir WKT files 

DSM2 reservoir coordinates are stored in CSDP landmark files. Follow the 

instructions in Section 2.8.2 to load a CSDP gate landmark file, and to create 

a WKT file. 

2.8.5 Creating DSM2 Reservoir Connection WKT files 

Unlike other CSDP files, the CSDP reservoir connection data used to create 

the DSM2 georeferenced grid maps are not created from DSM2 input or from 

a file that is used to create DSM2 input. The CSDP reservoir connecting file is 

a CSDP network file, similar to the network file used to store DSM2 channel 

information. 

To create a CSDP reservoir connection network file, load a bathymetry file 

and a node landmark file in the CSDP, and begin creating centerlines 

connecting the approximate reservoir location to the location of each node 

(Figure 2-12). 
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Create the WKT file using the procedure described at the end of section 

2.8.1.1. 

Figure 2-12 Creating reservoir connection lines in CSDP for Franks 

Tract and Little Franks Tract 

 

2.8.6 Creating Monitoring Station WKT file 

Monitoring station locations are stored in a CSDP landmark file. The 

monitoring station location data used to create the DSM2 georeferenced grid 

maps are not created from DSM2 input or from a file that is used to create 

DSM2 input. Follow the instructions in Section 2.8.2 to load a CSDP gate 

landmark file and to create a WKT file. 

2.8.7 Converting WKT files to GIS Shapefiles 

QGIS is a free open-source GIS application that can be used to create GIS 

shapefiles from the WKT files described in Section 2.8.6. 
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In QGIS, select Layer-Add Layer-Add Delimited Text Layer… (Figure 2-13a). 

In the Data Source Manager | Delimited Text dialog that appears (Figure 2-

13b), click the Browse button in the upper right corner. In the Choose A 

Delimited Text File to Open dialog (Figure 2-13c), select the WKT file for 

which you would like to create a GIS shapefile. Click the Add button in the 

Data Source Manager | Delimited Text dialog that appears (Figure 2-13d). In 

the Select Transformation for <layer name> dialog (Figure 2-13e), select a 

coordinate transformation, then click Add to accept. Your layer will now be 

displayed in the main QGIS window (Figure 2-13f). Right click on the layer 

and select Export-Save Features As…. In the Save <layer type> Layer as 

dialog that appears (Figure 2-13g), click the browse button (three dot icon) 

next to the Filename field. In the file selector dialog that appears (Figure 2-

13h), specify the name and location for the new GIS shapefile that you wish 

to create. Click the Open button (Figure 2-13i), and if all goes well, your new 

GIS shapefile will be displayed in the main QGIS window underneath the 

layer created by importing the WKT file (Figure 2-13j). 

Figure 2-13a Import a WKT file into QGIS 
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Figure 2-13b Click the Browse (3 dots) icon to load a WKT file 

 

 

Figure 2-13c Use the file selector dialog to select a WKT file to load 
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Figure 2-13d Click Add to add a layer to the map, created from the 

WKT file 

 

 

Figure 2-13e Select a coordinate transformation to use when 

creating a GIS layer from a WKT file 
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Figure 2-13f Exporting the layer 
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Figure 2-13g Click the Browse (3 dots) icon to specify a name and 

location for the shapefile you are creating 

 

 

Figure 2-13h Use the file selector dialog to specify the name and 

location of the shapefile 
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Figure 2-13i Click the OK button to create the shapefile 

 

 

 

  

Figure 2-13j The new shapefile is displayed underneath the layer 

created from the WKT file 
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2.9 Products 

The DSM2 georeferenced grid maps are available on the CNRA Open Data 

web site at https://data.cnra.ca.gov/dataset/dsm2-georeferenced-model-

grid, in the following formats: 

1. Adobe Portable Document Format (PDF): The PDF version of the 

grid map is recommended for most users. The PDF documents are 

created with ArcGIS Pro, and when viewed with Adobe Acrobat, 

retain the ability to toggle the display of layers and their symbols 

using the Layers panel, accessed by clicking the Layers icon (Figure 

2-14a). Adobe Acrobat also has a search feature that some users 

may find useful (Figure 2-14b). Select Edit-Find and enter text 

describing the feature for which you are searching. The text could 

be the name of a body of water, road, city, or other feature names. 

If Adobe Acrobat is able to find the text anywhere in the layers, the 

map view will be panned to the text that it finds. The PDF version of 

the grid map is available in two formats: 

a. Single zoom level PDF grid map (Figure 2-14c): In this 

format, the entire grid map is displayed at the same zoom 

level.  

b. Multiple zoom level PDF grid map (Figure 2-14d): In this 

format, the grid map is broken up into sections. This grid map 

may be a better choice for printing. 

2. GIS Shapefiles: A zip archive containing just the GIS shapefiles.  

3. Map packages for ArcGIS Pro and ArcGIS Desktop: Map packages 

contain shapefiles and symbology, and both load easily into ArcGIS 

Pro and ArcGIS Desktop. In ArcGIS Pro or Desktop, you can right 

click on a layer and view the attribute table for that layer (Figure 2-

15a). Double clicking on an item in the attribute table will pan the 

map view to the corresponding feature (Figure 2-15b). 

https://data.cnra.ca.gov/dataset/dsm2-georeferenced-model-grid
https://data.cnra.ca.gov/dataset/dsm2-georeferenced-model-grid
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Figure 2-14a Clicking the Layers button in Adobe Acrobat opens the 

Layers panel, enabling you to toggle the display of layers and their 

corresponding symbols 

 

 

 

  

Figure 2-14b Searching for the text “Rio Vista” in the grid map using 

Adobe Acrobat 
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Figure 2-14c A single zoom level version of the PDF grid map 
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Figure 2-14d A multiple zoom level version of the PDF grid map, 

designed for printing 
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Figure 2-15a To view an attribute table for a layer in ArcGIS, right 

click on the layer and select Attribute Table 
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Figure 2-15b DSM2 grid map in ArcGIS, with attribute table 

displayed on the lower right 

 

2.10 Grid Map Limitations 

The accuracy of the georeferenced information used to create DSM2 input is 

limited. Features, such as channel centerlines and nodes, are typically 

created by clicking on the CSDP plan view, at a zoom level similar to that 

shown in Figure 2-12 (one of the figures above showing the CSDP plan 

view). Using a higher zoom level might in some cases result in more 

accurate coordinates, but this is not considered to be necessary for DSM2. 

One reason is that some DSM2 features, such as nodes and channel 

centerline endpoints, do not always represent exact locations. Nodes are 

placed in locations that are determined visually by the CSDP user, and their 

location is intended to be the middle of the channel or junction.  

Here is a list of assumptions that users should not make regarding the 

information in the grid maps: 

• For reasons mentioned above, none of the locations of the grid map 

features, such as nodes, channels, reservoirs, and gates should be 

assumed to have a high level of accuracy.  

• For DSM2 v8.2 and prior versions, the grid maps should not be used to 

determine channel lengths or cross-section locations. DSM2 channel 
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lengths and some cross-sections in v8.2 and all prior versions have 

been determined without using the CSDP files. There are a number of 

discrepancies between these lengths and the CSDP centerline lengths. 

Future releases of DSM2 will resolve these discrepancies.  

• The locations of gates in the Grid Location layer are adjusted to 

prevent the gate symbol from overlapping the node symbol.  

• The locations of gates in the Actual Location layer are also 

approximate, not used by DSM2, and are just for reference. 
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Chapter 3 DSM2 Water Temperature 

Modeling Input Extension: 1922–2015 

3.1 Background 

The water quality module of the Delta Simulation Model II (DSM2 QUAL) was 

previously calibrated and validated during the period from 1990–2008 to 

simulate water temperature in the Sacramento-San Joaquin Delta (Delta) in 

2011 (Resources Management Associates 2011). In a follow-up study, the 

simulation period was extended to 2012 (Resources Management Associates 

2015). Recently, the Delta Modeling Section (DMS) was tasked to extend the 

water temperature simulation period to water years 1922–2015 to align with 

the current simulation period used by DWR’s water resources planning 

model, CalSim3. 

This document describes the input data requirements for modeling Delta 

water temperature via DSM2 QUAL and the methods applied to assemble or 

derive these data for the extended period. 

3.2 Data requirement  

DSM2 QUAL requires meteorological, water temperature, and flow boundary 

condition data to simulate temperature across the Delta. Five meteorological 

inputs are needed at a single location where conditions are representative of 

the Delta. In this case, a location in the central Delta at 38.0 N latitude and 

121.5 W longitude was selected. Flow and water temperature are needed at 

three boundary locations of the Delta: Sacramento River at Freeport 

(Freeport), San Joaquin River at Vernalis (Vernalis), and Martinez. Effluent 

flow and water temperature are needed at 12 boundary locations. Figure 3-1 

illustrates these locations as well as the DSM2 model boundary. 



Methodology for Flow and Salinity Estimates  43rd Annual Progress Report 

3-2 

Figure 3-1 Approximate locations of temperature boundaries, 

effluent boundaries, and meteorological inputs for DSM2 QUAL water 

temperature modeling 
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Table 3-1 lists five meteorological input variables and the location and 

sources of these data for the extended period. Data from gridded datasets 

Livneh and NOAA-CIRES-DOE 20th Century Reanalysis V3 reanalysis (NOAA 
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reanalysis) are applied to derive these meteorological inputs. To our 

knowledge, these two datasets are the only readily available and widely used 

datasets with desirable temporal resolution (i.e., daily or finer) and record 

period (i.e., at least covering the extended simulation period from  

1922–2015). The Livneh hydrometeorological dataset consists of daily 

precipitation and maximum and minimum air temperature at 1/16-degree 

spatial scale (approximately 6km by 6km) for the continental US, southern 

Canada, and Mexico from 1950–2013 (Livneh et al. 2015). These gridded 

temperature and precipitation data are interpolated from observations at 

about 20,000 weather stations. The developers later extended the dataset to 

cover the period from 1915 to 2015. The National Oceanic and Atmospheric 

Administration (NOAA) reanalysis dataset consists of a wide range of 

meteorological variables, including wind speed and atmospheric pressure at 

a three-hourly temporal scale and 1 degree (approximately 100 km by  

100 km) spatial scale from 1836 to 2015 (Slivinski et al. 2019). For each 

variable at a specific time at a specific location, the reanalysis dataset 

contains 80 individual ensemble members. This study uses the mean value 

of these ensemble members. In the Delta, the wind speed varies widely, 

while the atmospheric pressure is relatively uniform across different 

locations (Resources Management Associates 2011). Because of this, NOAA 

wind speed analysis data were bias corrected using wind speed observations 

recorded at a NOAA ground station located at Stockton, while no corrections 

were applied to NOAA atmospheric pressure reanalysis. The sources of these 

data are provided in the “Data Sources” Section. 

Table 3-1 Meteorological inputs required for Delta water 

temperature modeling 

Input variables Location Source Time Step 

Dry Bulb temperature (38.0N, 121.5W) Livneh dataset Hourly 

Wet Bulb temperature (38.0N, 121.5W) Derived Hourly 

Cloud cover (38.0N, 121.5W) Derived Hourly 

Atmospheric pressure (38.0N, 121.5W) NOAA reanalysis Hourly 

Wind speed (38.0N, 121.5W) NOAA reanalysis Hourly 

The boundary conditions are tabulated in Table 3-2. The Daily water 

temperature during the extended period (i.e., 1922–2015) at three DSM2 

boundary locations was derived via artificial neural networks (ANNs). The 

process is detailed in Section 3.2. Monthly effluent flow and water 
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temperature boundaries come from either historical data patterns or the 

CalSim3 model, which is further explained in Section 3.3. 

Table 3-2 Boundary conditions required for Delta water temperature 

modeling 

Input variables Location Source Time Step 

Water temperature Freeport Derived Daily 

Water temperature Vernalis Derived Daily 

Water temperature Martinez Derived Daily 

Water temperature Stockton Historical Monthly 

Water temperature Sacramento Historical Monthly 

Water temperature Tracy Historical Monthly 

Water temperature Manteca Historical Monthly 

Water temperature Lodi Historical Monthly 

Water temperature CCCSD Historical Monthly 

Water temperature Fairfield-Suisun Historical Monthly 

Water temperature Valero Historical Monthly 

Water temperature Martinez-Tesoro Historical Monthly 

Water temperature Delta Diablo Historical Monthly 

Water temperature Discovery Bay Historical Monthly 

Water temperature Mountain House Historical Monthly 

Flow  Stockton CalSim3 Monthly 

Flow Sac Waste CalSim3 Monthly 

Flow Tracy CalSim3 Monthly 

Flow Manteca CalSim3 Monthly 

Flow Lodi CalSim3 Monthly 

Flow CCCSD Historical Monthly 

Flow Fairfield-Suisun Historical  Monthly 

Flow Valero Historical Monthly 

Flow Martinez-Tesoro Historical Monthly 

Flow Delta Diablo Historical Monthly 

Flow Discovery Bay Historical Monthly 

Flow Mountain House Historical Monthly 
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3.3 Methodology 

3.3.1 Meteorological data generation 

In this study, most of the meteorological inputs listed in Table 3-1 were 

generated via the meteorology simulator, MetSim (Bennett et al. 2020). 

MetSim contains three main modules that conduct solar geometry 

computation, meteorological simulation, and temporal disaggregation, 

respectively. The solar geometry module identifies the daylength, 

transmittance of the atmosphere, daily potential radiation, and the fraction 

of daily radiation received at the top of atmosphere. Output of the solar 

geometry module drives the meteorological simulation module along with 

the input forcings, which typically include daily precipitation and maximum 

and minimum air temperatures. The meteorological simulation module 

calculates daily mean temperature, vapor pressure, shortwave radiation, 

cloud cover fraction, and potential evapotranspiration, etc. Daily data from 

input forcings or the meteorological simulation module can be disaggregated 

down to sub-daily (e.g., positive factors of 24) values via the temporal 

disaggregation module. In addition to variables output from the 

meteorological simulation module, the disaggregation module also generates 

sub-daily relative and specific humidity, precipitation, longwave radiation, 

and wind speed. Temperature is disaggregated using a Hermite polynomial 

interpolation method with user-specified times when the daily maximum and 

minimum temperatures occur. Vapor pressure is disaggregated by linearly 

interpolating between the vapor pressure and the saturation vapor pressure 

at the times when the daily minimum temperature occurs. The shortwave 

radiation at a given timestep is calculated as a fraction of the total daily 

shortwave radiation (which is calculated from the solar geometry module). 

Air pressure disaggregation is based on the disaggregated temperature and 

a user-specified elevation value at the study location. Specific and relative 

humidity in each timestep is determined from the disaggregated 

temperature and air pressure data. Wind speed, if provided as part of the 

input forcings, is assumed to be constant during the day. Precipitation can 

be disaggregated uniformly throughout the day or via a triangle method. For 

more detailed explanation on MetSim, please see Bennett et al. (2020) as 

well as the references cited there.  

To generate all necessary meteorological inputs for DSM2 QUAL at the 

desirable (hourly) time step, the current study made several modifications to 

MetSim (Figure 3-2). Firstly, MetSim does not calculate the wet-bulb 
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temperature, so the following equation from Stull (2011) is added to MetSim 

to derive the wet-bulb temperature as a function of temperature and relative 

humidity: 

𝑇𝑤𝑏 = 𝑇𝑎𝑡𝑎𝑛(0.151977√𝑅𝐻 + 8.313659) + atan(𝑇 + 𝑅𝐻) − atan(𝑅𝐻 − 1.6763331)

+ 0.00391838𝑅𝐻
3
2 atan(0.023101𝑅𝐻)

− 4.686035                                                 (1) 

where 𝑇 and 𝑇𝑤𝑏 denote temperature and wet-bulb temperature in degrees 

Celsius (˚C), and 𝑅𝐻 represents relative humidity (%), which is an output of 

the MetSim program. Yet, MetSim-derived relative humidity tends to have a 

dry bias (under-prediction). So before being applied to calculate the wet-

bulb temperature, MetSim-derived relative humidity is bias-corrected. 

Secondly, instead of assuming constant wind speed throughout the day, a 

linear interpolation method is applied to disaggregate the bias-corrected 

NOAA reanalysis wind speed input. Thirdly, because MetSim-simulated cloud 

cover differs from the observed cloud cover, a module is added to bias-

correct cloud cover simulation based on cloud cover recorded at Stockton 

station. When bias-correcting NOAA reanalysis wind speed, a constant ratio 

is applied every month to maintain consistency with the general approach 

applied in wind speed adjustment during the model calibration process 

(Resources Management Associates 2011, 2015). When bias-correcting 

relative humidity and cloud cover, a quantile mapping approach is employed. 
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Figure 3-2 Schematic of meteorological input generation process 

 

Note: The modified MetSim program is applied. 

The process of bias-correcting wind speed is as follows: 

• Firstly, during the period when wind speed observations are available 

(1973–2015), 3-hourly NOAA reanalysis wind speed is aggregated to 

monthly. In a similar way, observed wind speed at Stockton is 

aggregated to monthly. Long-term monthly mean values are 

calculated for both datasets. 

• Secondly, a monthly ratio for each month is calculated as mean 

observed monthly wind speed divided by the mean reanalysis wind 

speed in that month, as illustrated in Figure 3-3 below. 
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Figure 3-3 Monthly ratios determined for bias-correcting wind speed 

reanalysis data 

 

• Thirdly, for reanalysis of wind speed in a specific month from water 

years 1915–2015, the monthly ratio corresponding to that month is 

applied to scale up or scale down all the wind speed reanalysis data.  

• Finally, the adjusted 3-hourly reanalysis wind speed during 1915–2015 

from the previous step is disaggregated into hourly wind speed using a 

linear interpolation method.  

In comparison, the quantile mapping approach adjusts the simulated data 

based on its percentile rather than the month when it’s recorded. This 

approach first identifies the cumulative distribution functions (CDF) of both 

the observed and the simulated values of the selected variable (e.g., relative 

humidity). Second, for a specific percentile (e.g., 40 percent), a 

corresponding ratio is calculated as the observed value at that percentile 

divided by the simulated value at that percentile (Figure 3-4). Next, this 

ratio is applied to adjust MetSim simulations during the target period (1922–

2015) at that percentile. This process is then repeated for all other 

percentiles. 
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Figure 3-4 Schematic illustrating the quantile mapping approach 

 

3.3.2 Water temperature boundary generation 

Data-driven artificial neural networks (ANNs) are employed in deriving water 

temperature at three DSM2 boundary locations. An ANN utilizes a 

mathematical network structure to implicitly derive the relationships 

between the input variables (e.g., air temperature and solar radiation) and 

the output variables (e.g., water temperature). Among all ANN models 

developed and applied in the field of water resources engineering, multilayer 

perceptron (MLP) networks are probably the most popular (Maier et al. 

2010). An MLP consists of an input layer, an output layer, and one or more 

hidden layer(s) (Figure 3-5). Each layer has one or multiple neurons. A 

neuron in a specific hidden layer obtains information from neurons in the 

previous layer and exports a transformation of the combined input 

information to neurons in the next layer. The connections between neurons 

in two adjacent layers are represented by linear weights. These weights are 

trainable parameters determined in the training process by minimizing the 

difference between network outputs and corresponding observations. 
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Figure 3-5 Schematic of the multilayer perceptron (MLP) structure 

applied in deriving water temperature at three Delta boundary 

locations 

 

Note: wi,j and bi,j represent the linear weight and bias associated with the connection 
between two neurons in adjacent layers, respectively. Sigmoid is a common activation 
function that introduces non-linearity into the output of a neuron. 

In the current study, a three-layer MLP is employed to derive water 

temperature boundaries. The hidden layer contains five neurons. 

Specifically, a separate MLP is developed for each of the three boundary 

locations (Freeport, Vernalis, and Martinez). During the training period 

(1990–2013), corresponding daily temperature observations from previous 

studies (Resources Management Associates 2011, 2015) and simulated solar 

radiation via empirical energy balance equations are utilized as inputs. 

During the simulation period (1922–2015), MetSim-generated temperature 

simulations (Section 3.1) and the simulated solar radiation are applied to 

drive the trained MLPs and generate daily water temperature at these three 

locations. 

3.3.3 Effluent boundary generation 

Effluent flow and temperature at 12 locations are required (Figure 3-1). 

Historical observations at these locations are sparse, so flow rate and flow 

temperature are assembled on a monthly time-scale. CalSim 3-simulated 
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flows are directly utilized when produced at needed effluent locations (Table 

3-2). At the remaining locations, flow discharge is assumed to follow a same 

monthly pattern every year from 1922–2015. For each month, the observed 

flow rates at that month during the historical period obtained in the 

Resources Management Associates (RMA) studies (Resources Management 

Associates 2011, 2015) are averaged to yield the corresponding flow rate. 

Flow temperatures at all 12 locations are derived in the same way.  

3.4 Results 

3.4.1 Meteorological inputs 

Figure 3–6 to Figure 3-10 depict MetSim-generated (at the Central Delta 

location) versus observed (at Stockton) hourly meteorological variables, 

including dry-bulb temperature, wet-bulb temperature, air pressure, wind 

speed, and cloud cover. The results are shown for the times when the 

observations are available. It is evident that the simulated dry-bulb 

temperature (Figure 3-6), wet-bulb temperature (Figure 3-7), and air 

pressure (Figure 3-8) mimic the corresponding observations well. For each, 

the correlation between the simulated and observed is very high (i.e., over 

0.9) while the bias between them is generally small (i.e., less than 1 

percent). 

In comparison, the correlation between simulated and observed wind speed 

is moderately strong (Figure 3-9). MetSim-derived wind speed generally 

under simulates the high range of wind speed (i.e., over 25 mph) and over 

simulates the low range of wind speed (i.e., less than 5 mph). Overall, 

though, the bias is still very small (1.3 percent). 

For cloud cover (Figure 3-10), the correlation between the simulated and the 

observed is moderate (0.54). The bias between them is reasonably 

satisfactory (-5.1 percent). Notably, cloud cover observations contain only 

10 values during the entire observation period, ranging from 0 to 1 in 

increments of 0.1. Therefore, the cumulative distribution function (CDF) 

curve of observed cloud cover has a stair-step shape (Figure 3-11). MetSim 

is able to generate continuous cloud cover values from 0 to 1. The 

corresponding CDF curve is smooth. Quantile-mapping a continuous CDF to 

a stair-step CDF limits the accuracy of the bias-correction. 
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Figure 3-6 MetSim-simulated and observed hourly dry-bulb 

temperature (T) from 1973–2015 

 

 

 

Figure 3-7 MetSim-simulated and observed hourly wet-bulb 

temperature (WBT) from 1973–2015 
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Figure 3-8 MetSim-simulated and observed hourly air pressure (AP) 

from 1973–2015 

 

 

  

Figure 3-9 MetSim-simulated and observed hourly wind speed (WS) 

from 1973–2015 
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Figure 3-10 MetSim-simulated and observed hourly cloud cover (CC) 

from 1973–2015 

 

 

  

Figure 3-11 Cumulative distribution functions (CDFs) of MetSim-

simulated and observed hourly cloud cover from 1973–2015 
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3.4.2 Water temperature boundary 

This section presents the performance of the trained water temperature 

ANNs during the analysis period from 1990 to 2013. For that purpose, visual 

comparison of ANN simulations against the corresponding observations, as 

well as the discrepancies between them, is presented. Additionally, a set of 

statistical metrics are examined. These metrics include correlation 

coefficient, root-mean square error, percent bias (bias), and Nash-Sutcliffe 

efficiency coefficient. The correlation coefficient ranges from -1 to 1, with an 

absolute value closer to 1 indicating higher-end correlation between model 

simulations and the observations. The root-mean-square-error is a non-

negative number, with smaller values designating better model performance. 

The metric takes the square root of the discrepancy between modeled and 

observed data. Consequently, it implicitly assigns relative higher weights to 

larger discrepancies. The percent bias measures the percent differences 

between model simulations and the corresponding observations. This shows 

how much the model under-simulates (negative bias) or over-simulates 

(positive bias) the observations on an average sense. The Nash-Sutcliffe 

efficiency coefficient is less than or equal to 1. A value closer to 1 suggests 

more satisfactory model performance. 

ANN-derived water temperature simulations at three locations well mimic the 

observed values in terms of both variation pattern and magnitude (Figure  

3-12 to Figure 3-14). Most of the discrepancies between modeled and 

observed values range from -1 to 1 °C. The correlations between them are 

consistently above 0.9 across three locations. The biases are generally small 

while the Nash-Sutcliffe efficiency values are high. Among three locations, 

the downstream boundary location Martinez has the most desirable metrics. 

Overall, the ANN models yield satisfactory water temperature simulations at 

these boundary locations. 
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Figure 3-12 Performance of the trained water temperature ANN at 

Freeport  

 

Note: The performance is illustrated by a scatter plot showing the observed (i.e., target) 
against the ANN-derived (i.e., prediction) water temperature values (upper left panel), a 
probability density plot of the residuals between them (upper right panel), and a time 
series of them during the training period (lower panel). Corresponding statistical metrics 
correlation (corr), root-mean square error (rmse), percent bias (bias), and Nash-Sutcliffe 
efficiency (nse) coefficient are also shown. 
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Figure 3-13 Performance of the trained water temperature ANN at 

Vernalis  

 

Note: The performance is illustrated by a scatter plot showing the observed (i.e., target) 
against the ANN-derived (i.e., prediction) water temperature values (upper left panel), a 
probability density plot of the residuals between them (upper right panel), and a time 
series of them during the training period (lower panel). Corresponding statistical metrics 
correlation (corr), root-mean square error (rmse), percent bias (bias), and Nash-Sutcliffe 
efficiency (nse) coefficient are also shown. 
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Figure 3-14 Performance of the trained water temperature ANN at 

Martinez  

 

Note: The performance is illustrated by a scatter plot showing the observed (i.e., target) 
against the ANN-derived (i.e., prediction) water temperature values (upper left panel), a 
probability density plot of the residuals between them (upper right panel), and a time 
series of them during the training period (lower panel). Corresponding statistical metrics 
correlation (corr), root-mean square error (rmse), percent bias (bias), and Nash-Sutcliffe 
efficiency (nse) coefficient are also shown. 

3.4.3 Effluent boundary 

Figure 3-15 shows the monthly effluent flow temperature (the upper panel) 

at the 12 locations shown in Figure 3-1. A similar seasonal variation pattern 

is evident at each location. For a specific month, there are noticeable 

variations in temperature values among 12 locations. Monthly effluent flow 

rates at seven non-CalSim3 locations are also illustrated in Figure 3-15 (the 

lower panel). The effluent flow rates are generally small, particularly for 

Valero, Discovery Bay, and Mount House. The seasonal variation in flow rate 

is less evident compared to that of the effluent water temperature. 
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Figure 3-15 Monthly effluent temperature and flow discharge 

 

3.5 Summary 

This document describes the methods utilized to derive necessary input data 

for DSM2 QUAL to simulate water temperature across the Delta for water 

years 1922 through 2015. These inputs contain five meteorological variables 

at a location in the central Delta, water temperature values at three 

boundary locations, and effluent flow temperature and flow rate at 12 

locations. A modified meteorological processor, MetSim, is applied to derive 

those meteorological variables based on two research datasets with long 

records. Artificial neural networks (ANNs) were developed to generate water 

temperature at three DSM2 boundary locations. Effluence flow temperature 

and flow rate are derived from limited observations from relevant previous 

studies or directly from CalSim3 simulations. This document further presents 

MetSim and ANN results and compares them with the corresponding field 

observations. These comparisons indicate that both MetSim and ANN-based 

inputs are able to yield simulations that effectively mimic the observations. 

The methods described herein can be adapted to generate input data for 

DSM2 QUAL water temperature modeling under different climate scenarios. 
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3.7 Data sources 

• Livneh temperature and precipitation dataset 

ftp://livnehpublicstorage.colorado.edu/public/Livneh.2016.Dataset/Meteorology.n

etCDF/  

• NOAA reanalysis dataset 

ftp://ftp2.psl.noaa.gov/Datasets/20thC_ReanV3  

• CIMIS data 

ftp://ftpcimis.water.ca.gov/pub2/annual/  
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Chapter 4 South Delta Salinity-Constituent 

Conversion via Machine Learning  

4.1 Introduction 

Electrical Conductance (EC) is a water quality metric typically used to 

represent the salinity level. It can also be used as the predictor for other ion 

constituents, including Total Dissolved Solids (TDS), dissolved chloride (Cl-), 

dissolved sulfate (SO42-), dissolved sodium (Na+), dissolved calcium (Ca2+), 

dissolved magnesium (Mg2+), dissolved nitrate (NO3-), dissolved potassium 

(K+), dissolved bromide (Br-), dissolved boron (B), Alkalinity, and water 

hardness in the Delta. These ion constituents are typically treated as water 

quality indicators and can be measured by standard laboratory methods. 

Regression models have also been developed and applied to simulate the 

concentrations of these ion constituents in the Delta (Jung 2000; Suits 

2002; Hutton 2006; Denton 2015). Most recently, the North Central Region 

Office (NCRO) used parametric quadratic regression equations to estimate 

the concentrations of these 12 ion constituents, using EC as the predictor. 

That study, intended to identify and investigate sources of local salt loading 

in south Delta channels, collected and used grab sample data from 2018–

2020 at seven key locations in the south Delta (California Department of 

Water Resources North Central Region Office 2021). The goal of the current 

study is to develop machine learning models to emulate the regression 

equations in the NCRO study to simulate ion constituents. The results 

indicate that machine learning models can provide simulations comparable 

or superior to the regression equations.  

4.2 Methodology 

4.2.1 Study Locations and Study Dataset 

From 2018 to 2020, the Water Quality Evaluation Section (WQES) of NCRO 

collected standard ion samples at seven stations (Figure 4-1) co-located with 

continuous water quality equipment measuring salinity conditions in the 

south Delta. These stations (Figure 4-1, Table 4-1) were selected to track 

the water quality effects in south Delta channels resulting from possible 

discharges into Paradise Cut and Sugar Cut (California Department of Water 

Resources North Central Region Office 2021). Samples were collected on a 
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near-monthly basis for ion analysis at 1-meter depth using a Van Dorn 

sampler. The California Department of Water Resources’ (DWR’s) Bryte 

Laboratory used 0.45-micron filter grab samples to determine the 

concentrations of the aforementioned 12 ion constituents (California 

Department of Water Resources North Central Region Office 2021). The 

sampled data were used in this study to train and test proposed machine 

learning models. 

Table 4-1 Station information including Water Data Library discrete 

water sample station I.D. and geographic coordinates in WGS 84* 

Station Name ID Latitude Longitude 

Grant Line Canal East  GLE 37.820 -121.435 

Old River above Doughty Cut  ORX 37.811 -121.387 

Old River at TWA  TWA 37.803 -121.457 

Old River near Head OH1 37.808 -121.331 

Paradise Cut  PDC 37.802 -121.412 

Paradise Cut Upstream  PDUP 37.801 -121.373 

Sugar Cut at Golden Anchor  SGA 37.793 -121.421 

* Adapted from (California Department of Water Resources North Central Region Office 
2021). 
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Figure 4-1 Map showing seven study stations in the south Delta.  

 

Note: The insert map shows the location of the San Francisco Bay and Sacramento-
San Joaquin Delta (Bay-Delta), containing the South Delta study area (highlighted in the 
red rectangle). 

4.2.2 Model Development 

Four nonparametric supervised machine learning (ML) techniques, 

Generalized Additive Model (GAM), Regression Trees (RT), Random Forest 

(RF), and Artificial Neural Networks (ANNs), were employed to estimate ion 

constituents after given the EC at these seven study stations. Because of the 

combination of a complex channel network and bathymetry in the south 

Delta and varying impacts on local hydrodynamics from ocean tides, channel 

diversions, island drainage, Banks Pumping Plant pumping, and San Joaquin 

River inflow, the source of the water and thus the proportions of water 

quality constituents at each station can differ. 

For this reason, in the first scenario, station names were employed as 

categorical variables as part of the input data fed into the ML models. 

Considering that machine learning algorithms cannot use categorical 

variables in the numerical calculation, an encoding technique was 
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implemented to convert the seven stations' names to numerical values. In 

encoding the categorical variables, a number is assigned to each variable (1 

to 7 in this case). The numbers have no quantitative value, and the order 

does not matter (Potdar et al. 2017). In the second scenario, the month and 

water year type (when a specific sample was taken) were added as 

additional input features to assess their potential impacts on the model 

outcome. In the first scenario, ML models were trained for the entire dataset 

to maintain consistency with the training method applied in developing the 

quadratic regression models. The input-output datasets were randomly split 

into two groups for training (80 percent of the dataset) and testing (20 

percent of the dataset) in the second scenario. The performance of four ML 

models was evaluated using two criteria, 𝑅2 (Equation 1) and Mean Absolute 

Error (MAE) (Equation 2). 𝑅2 ranges from 0 to 1, with a value close to 1 

meaning that model simulations capture most of the variability in the 

observed data. MAE is a positive number, with a value close to 0 meaning 

that the model-simulated values are very close to observed values. A brief 

overview of the nonparametric supervised machine learning techniques used 

in this study is provided as follows. 
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SSE
𝑅2 = 1 −  

SSTotal
                                                                     (1) 

SSE: Sum of squared error (or residuals). 𝑆𝑆𝐸 = ∑𝑖(𝑦𝑖 − �̂�𝑖)
2 

SSTotal: Sum of squared deviations from the mean �̅� (total variation of y 

without model adjustment). SSTotal = ∑𝑖(𝑦𝑖 − �̂�𝑖)
2 + ∑𝑖(�̂�𝑖 − �̅�)2      

 𝑦𝑖 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 

 �̂�𝑖 = 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 

�̅� = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 

𝑛∑ |�̂�𝑖−𝑦
𝑀𝐴𝐸 𝑖|

= 𝑖=1                                                                                                                                 (2) 
n

 

4.2.2.1 Generalized Additive Model 

The Generalized Additive Model (GAM) provides a general framework for 

improving standard linear models by allowing for non-linear relationships 

between each feature and the response (Hastie and Tibshirani 1986; James 

et al. 2013). GAM replaces each linear component with a (smooth) non-

linear function 𝑓𝑗(𝑥𝑖𝑗) and calculates a separate 𝑓𝑗(𝑥𝑖𝑗) for each predictor when 

others remain fixed. GAM divides the variation range of each environmental 

predictor into distinct regions. It fits a polynomial function in each region 

with the limitation that the polynomial function in each region needs to join 

smoothly to the polynomial in the next region. Equation 3 shows the general 

form of the GAM model. 𝑦𝑖 represents the targets that are ion constituents in 

our study. Also, 𝑓1(𝐸𝐶) is unspecified smooth ("nonparametric") function of 

EC. The individual functions of the GAM model were developed using the 

mgcv estimation package (Wood 2017) in the R statistical computing 

environment (R Core Team 2021) and the field sampling data. 

𝒑
𝒚𝒊 =  𝜷𝟎 + ∑𝒋=𝟏 𝒇𝒋(𝒙𝒊𝒋) + 𝝐𝒊 =  𝜷𝟎 + 𝒇𝟏(𝑬𝑪) + 𝝐𝒊                             (3) 
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4.2.2.2 Decision Trees 

Decision trees are popular machine learning methods that can be applied to 

both regression and classification problems. This method stratifies the 

predictor space into several rectangular regions and assigns a mean of each 

region to all observed data included in that specific region (Loh 2011; James 

et al. 2013). Tree-based ML models are useful for interpretation, as their 

results indicate the importance of predictors, and the split points suggest the 

best threshold for each predictor.   

The first step in each decision tree is finding the best split predictor and 

cutpoint at each node of the decision tree. The model implements the 

recursive binary splitting method that splits the dataset into two new 

branches. The decision tree considers all predictors and all possible cutpoints 

for each predictor and then chooses the predictor and cutpoints for which 

the Residual Sum of Squares (RSS) is the minimum (James et al., 2013). 

Equation 4 shows the RSS criteria to be minimized at each splitting point, 

where R1 and R2 are the two new branch regions after each splitting process, 

j is the predictor indicator, and S is the cutpoint. 𝑦𝑖 represents the targets 

that are ion constituents in this study. The individual functions of the RT 

model were determined by using the rpart package (Therneau and Atkinson 

2019) in the R statistical computing environment. 

𝑅𝑆𝑆 = ∑ (𝑦𝑖 − �̂�𝑅1
)

2
+ ∑ (𝑦𝑖 − �̂�𝑅2

)
2

𝑖:𝑥𝑖∈𝑅2(𝑗,𝑠)𝑖:𝑥𝑖∈𝑅1(𝑗,𝑠)                          (4) 

 

4.2.2.3 Random Forest 

Random Forest (RF) has demonstrated strong predictive performance in 

addressing a wide range of classification and regression analysis problems 

(Liaw and Wiener 2002). It incorporates multiple decision trees in 

conjunction with the bootstrap technique to decrease the variance of a 

statistical learning method. This allows for the production of new populations 

from the primary population by resampling data (James et al. 2013). RF 

cumulates the results of all decision trees that were produced by the 

bootstrapping technique. In other words, if 𝛽 separate training datasets were 

produced by the bootstrapping method, 𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝛽(𝑥) will be the result of 

each decision tree. Equation 5 shows the final result of the RF method, the 

average of all of the decision trees, which generates a single low-variance 

statistical learning model with more accuracy. The individual functions of the 
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RF model were determined by using the “randomForest” package in the R 

statistical computing environment. 

 

𝑓𝑎𝑣𝑔(𝑥) =  
1

𝛽
∑ 𝑓𝑏𝛽

𝑏=1 (𝑥)                                                         (5) 

 

4.2.2.4 Artificial Neural Network (ANN) 

Artificial intelligence-based neural network (ANN) models are alternative 

predictive models that have been widely adopted for model identification, 

analysis, and forecasting. The ANN has been proven to be an effective 

method for developing non-linear relationships between a dependent 

variable and independent variables (Hopfield 1988; Zhang et al. 2015).  

A typical ANN model consists of three primary layers: an input layer, a 

hidden layer, and an output layer. In this study, the ANN consists of four 

layers: an input layer, two hidden layers, and an output layer. The input 

layers contain two input variables, electrical conductance (EC) and station 

name (as a categorical variable). The number of neurons in hidden layers 

and their activation functions were determined after experimenting with 

multiple iterations until maximum simulation accuracy can be obtained. The 

number of neurons in each hidden layer was determined to be 20, and the 

Rectified linear function 𝑓(𝛼) = max(𝑜, 𝛼) was selected as the activation 

function. The loss function is the Mean Squared Error (MSE). Figure 4-2 

shows the Artificial Neural Network architecture. The individual functions of 

the ANN model were determined by using the open source "H2O" package in 

the R statistical computing environment (Candel et al. 2016). 

Figure 4-2 Artificial Neural Network architecture 
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4.3 Results 

This section first presents the training performance of the four ML models 

while simulating three ion constituents (nitrate, potassium, and boron) for 

which the regression equations in the NCRO study (California Department of 

Water Resources North Central Region Office 2021) have relatively poor 

performance. This section presents the selection and evaluation of the ML 

model with the most desirable performance. Finally, the performance of the 

selected model on the remaining nine ion constituents is illustrated. 

4.3.1 Simulation of Nitrate (NO3-), Potassium (K+), and Boron (B) 

The performance of ML models on simulating the concentration of nitrate, 

potassium, and boron is first evaluated using two metrics, R2 and Mean 

Absolute Error (MAE) (Figure 4-3 (a–f)). The findings are summarized as 

follows: 

• For the nitrate simulation, the R2 values are calculated as 0.32, 0.51, 

0.67, 0.88, 0.57 for the quadratic equation (benchmark), GAM, RT, RF, 

and ANN, respectively. The MAE values are determined as 1.62, 1.37, 

1.09, 0.66, and 1.2 milligrams per liter (mg/l) for these five models, 

respectively. The training results for nitrate show that the RF model 

yields the highest R2 (Figure 4-3a) and lowest MAE (Figure 4-3b). 

Compared to the quadratic equation, the R2 for RF model increases by 

175 percent and the MAE decreases by 59 percent. 

• The training results for potassium show that the RF model again yields 

the highest 𝑅2 (Figure 4-3c) and lowest MAE (Figure 4-3d). The R2 

values are 0.61, 0.65, 0.87, 0.60 for GAM, RT, RF, and ANN, 

respectively. The RF model shows the largest improvement (47 

percent) on R2 over the benchmark quadratic equation. The quadratic 

equation also has a poor MAE value (0.59 mg/l). The MAE values for 

these four ML models are 0.48, 0.45, 0.27, and 0.51 mg/l, 

respectively. The RF model also has the largest improvement in MAE 

(54 percent) over the quadratic equation. 

• The training results for boron show that the RF model again yields the 

highest 𝑅2 (Figure 4-3e) and lowest MAE (Figure 4-3f). Compared to 

the quadratic equation, the R2 for RF model increases by 28 percent 

and the MAE decreases by 64 percent. Consistent with nitrate and 

potassium, the GAM, RT, RF, and ANN models all outperform the 

Quadratic Equation model. 
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Figure 4-3 Comparison between performance of five ion simulation 

models based on R2 (first column, panels (a), (c), and (e)) and MAE 

(second column, panel (b), (d), and (f)) 

 

Note: The first, second, and third rows show performance of nitrate, potassium, and 
boron, respectively. 

4.3.2 Model selection and testing under a second scenario 

The results above show that the Random Forest (RF) model has the best 

performance during training based 𝑅2 and MAE. The RF model was therefore 

chosen to be tested under a second scenario which contains month and 

water year type as inputs. The grab samples in the dataset covered all 12 

months and three water year types (below normal for 2018, wet for 2019, 

and dry for 2020). Figure 4-4 a–b compares the two scenarios' performances 

based on 𝑅2 (Figure 4-4a) and MAE (Figure 4-4b). RF based on four inputs 

(RF_4) outperforms RF based on only two inputs, increasing 𝑅2 by 8 percent, 

2.3 percent, and 1 percent for NO3-, K+, and B, respectively, and decreasing 

MAE by 50 percent, 22 percent, and 15 percent for NO3-, K+, and B, 

respectively. 
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Figure 4-4 RF model performance on simulating the concentrations 

of nitrate, potassium, and boron under two scenarios (scenario 1, 

RF_2, with two predictors consisting of EC and station; scenario 2, 

RF_4, with four predictors consisting of EC, station, month, and 

water year type) based on (a) R2 and (b) MAE 

 

4.3.3 Model assessment 

This subsection now assesses the prediction error (i.e., test error or 

generalization error) of the RF model on new ion data and discusses the 

potential issue of overfitting the model. The generalization performance of a 

model developed via a learning method is based on its ability to predict test 

data not used in training. Assessment of this performance guides model 

selection and measures the usefulness of the chosen model. Test error is the 

model prediction error over a test sample of data not used in training the 

model. One of the best approaches for first training and then testing a model 

is to randomly divide the data into two parts: training data and test data. 

The training data are used to fit or develop the models. The test data are 

used to assess the model generalization error by comparing simulated ion 

concentrations to observed values not used in the model development. 

Determining the number of observations in the training and test datasets 

depends on the signal-to-noise ratio in the data and the training sample 
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size. In this study, because of the limitation of data samples (183 samples), 

the data were divided such that 80 percent (146 samples) are used for 

training and 20 percent (37 samples) are used for testing. The models are 

then tested with data not used in model training, which helps to avoid 

overtraining (or overfitting) the models.  

A concern of the development of any model that is based on observed data 

is fitting the model to the observed data so closely that it then fails to 

provide meaningful results for other conditions. Random Forest models rely 

on an ensemble of other models called decision trees. Decision trees can 

capture complex interaction structures in the data. When trees grow deep, 

the final model has low bias and high variance that cause an overfitting 

problem. Also, decision trees use Gini impurity (a measurement of the 

likelihood of an incorrect classification of a new instance of a random 

variable if that new instance were randomly classified according to the 

distribution of class labels from the data set) to split each node. Gini 

impurity restricts the decision tree; consequently, there is no guarantee of 

using all features during training. Random Forest is a substantial 

modification of bagging that builds a large collection of de-correlated trees. 

In fact, being able to choose these random subsets of features allows us to 

explore many different aspects of the entire feature space. Random Forest 

creates subsets of randomly picked features at each potential split. Because 

of this, the developer of the RF algorithm claimed that "Random forests does 

not overfit" (Breiman 2001). Hastie (2018) further ascertained that 

increasing the number of trees in RF does not cause the RF sequence to 

overfit after a certain number of trees, because: (a) different random 

selections don't reveal any more information; and (b) different random 

selections are simply duplicating trees that have already been created. 

Therefore, in theory, overfitting while training an RF model shouldn't be a 

concern. The study results shown in Figure 4-5 look at this issue directly.   

Figure 4-9 a–f shows how well the RF model performs with training and 

independent test datasets by comparing observed NO3-, K+, and B levels 

and their counterparts simulated via the RF models. The x-axis shows the 

observed data, and the y-axis shows the simulated f-data. The dashed line 

in the graphs is the 1:1 line that shows a perfect model that can simulate 

the observations without any errors. The quantitative performance of the RF 

models with the training and independent testing datasets is also 

summarized in Table 4-2. The R2 are 0.95 and 0.95 for training and 
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independent testing for NO3-, respectively. The MAE is 0.39 and 0.48 mg/l 

for training and independent testing for NO3-, respectively. The simulation 

model for potassium has close R2 and MAE for training and independent 

testing. R2 values are 0.88 and 0.86, and MAE values are 0.24 and 0.25 for 

training and independent testing, respectively. The performance of the boron 

simulation model for training and independent testing is satisfactory. 

Specifically, R2 values are 0.97 and 0.97, and MAE values are 0.02 and 0.02 

for training and independent testing, respectively. Overall, the results 

indicate that the model performance during the training process is fairly 

similar to its counterpart during the independent testing process. The 

possibility of model overfitting is remote. 

Table 4-2 shows the performance of the RF-4 model for all 12 ion 

constituents based on two criteria (R2 and MAE) for training and independent 

testing. Overall, R2 for training and independent dataset for other nine ion 

constituents are close to 1. Also, the MAE of the ion constituents are 

noticeably decreased when compared with benchmark models. 

Table 4-2 Performance of RF prediction model with four predictors 

and benchmark model (quadratic equation) 

Ion 
Constituents 

Performance of the RF model 
Performance of the 
benchmark model  

R2 MAE 
R2 MAE 

Training Validation Training Validation 

B 0.97 0.97 0.02 0.02 0.75 0.06 

Br- 0.99 0.99 0.02 0.02 0.98 0.03 

Ca2+ 0.997 0.998 1.33 1.29 0.99 2.71 

Cl- 0.998 0.998 3.28 3.14 0.99 6.25 

Hardness 1 1 4.79 5.06 0.99 8.13 

K+ 0.88 0.86 0.24 0.25 0.59 0.52 

Mg2+ 1 1 0.49 0.61 0.99 0.75 

NO3- 0.95 0.95 0.39 0.48 0.32 1.59 

Na+ 1 1 1.98 2.54 0.99 4.08 

SO42- 1 1 2.38 2.36 0.98 5.76 

TDS 1 1 7.14 8.25 0.99 8.02 

Alkalinity 0.99 0.98 2.81 3.94 0.96 5.37 
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Figure 4-5 Observed (x-axis) RF model-simulated (y-axis) on the 

concentrations of nitrate (first row), potassium (second row), and 

boron (third row) 

 

Note: The first column (panels (a), (b) and (c)) and second column (panels (d), (e), and 
(f)) show the training and validation results, respectively. 

4.3.4 Testing the selected model on other ion constituents 

The RF_2 and RF_4 scenarios are tested on nine other water quality 

parameters to evaluate the performance of the selected ML models on all 

water quality parameters. For the purpose of illustration, Figure 4-6 presents 

the percent improvement of the RF_2 and RF_4 models when compared with 

the benchmark model (quadratic equation) based on 𝑅2 and MAE, 

respectively. The improvement in R2 is between 0.2 percent to 3.2 percent 

for nine ion constituents. The RF models do not significantly improve the 

accuracy based on 𝑅2 because the benchmark models already yield 

satisfactory R2 for these nine constituents (Table 4-2). In contrast, the 

improvement in MAE is remarkable. For instance, RF_4 increases 𝑅2 by 0.2 

percent, but it reduces MAE by 75 percent over the quadratic equation for 

simulating TDS. Moreover, RF_4 improves MAE by 60, 66, 59, 60, 46, 60, 
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53, and 48 percent for Cl-, SO42-, Na+, Ca2+, Mg2+, Br-, Hardness, and 

Alkalinity, respectively. These observations indicate that though the 

quadratic questions can yield fairly reasonable simulations on these nine 

constituents, the RF models (particularly with four predictors) can yield even 

better simulations with notably smaller errors (measured by MAE). 

Figure 4-6 RF model performance on simulating the concentrations 

of nine ion constituents under two scenarios (RF_2 and RF_4) based 

on percent improvement from the benchmark model represented by 

(a) R2 and (b) MAE 
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4.4 Summary and Future Work 

This study developed four types of Machine Learning (ML) models (i.e., GAM, 

RT, RF, and ANNs) within the R statistical computing environment to 

simulate the concentrations of 12 ion constituents in the South Delta. The 

results are compared to those of the conventional quadratic regression 

equations previously developed. The key findings are summarized as 

follows: 

• ML models showed comparable or better performance in simulating the 

concentrations of ion constituents than the conventional quadratic 

equations.  

• Among all ML models, the RF models tended to yield the best 

performance metrics.  

• Using additional input features including station name and the 

corresponding time (including month and the type of the year when 

the samples were collected) as categorical variables improved the 

performance of the RF models.  

• RF models, by design, minimize the potential of model overfitting, 

which was confirmed in this study by testing the trained models using 

randomly selected independent datasets. 

The newly developed machine learning models in this study were trained for 

seven different water quality stations in the south Delta. The application of 

these models is limited to these stations. Next, machine learning models will 

be trained for wherever sample data are available in the Delta. Moreover, 

clustering methods, such as K-means, and hierarchical methods will be 

applied Delta-wide to divide the Delta into sub-regions based on data 

patterns (i.e., stations with similar data patterns will be grouped into the 

same sub-region). Different machine learning models will be developed for 

different sub-regions. Furthermore, salinity and discharge information at 

Delta boundaries such as the Sacramento River (freshwater boundary), the 

seawater boundary, and the San Joaquin River (agricultural boundary) will 

be added to the model to increase model performance. In addition to 

sampled data, model simulations (e.g., DSM2-simulated salinity and flows) 

will also be utilized to train machine learning models.  
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Chapter 5 Hotstart and Nudging 

Preprocessors for Bay-Delta SCHISM 

5.1 Background 

Bay-Delta SCHISM (Ateljevich et al. 2014) is an application of the Semi-

implicit Cross-scale Hydroinformatics Simulation Model (SCHISM), a three-

dimensional hydrodynamic and water quality model, to the Sacramento-San 

Joaquin River Delta. The model simulates flow, salinity, sediment transport, 

and other water quality processes. Data and examples described in this 

chapter are distributed publicly in the subdirectory of a Python preprocessing 

library on github called schimpy 

(https://github.com/CADWRDeltaModeling/schimpy.git).  

Like any hydrodynamic and transport model, SCHISM requires an initial 

condition. An initial condition is a complete specification of the spatial field 

for all variables, and this is never available except for a continuation of a 

prior run, so simplifying assumptions, approximation, and interpolation are 

required. The concept of hot-starting SCHISM is to start the model with 

accurate or realistic initial states of temperature, salinity, and potentially 

other water quality constituents (e.g., suspended sediment or 

biogeochemical variables). This is an important capability for the Delta 

system, because the memory of the initial condition for tracers, particularly 

conservative tracers like salinity, can last for months. Starting from a more 

accurate initial state can greatly shorten the spin-up time of the model. A 

high-fidelity initial state normally results in better hindcast and future 

predictions in the short term — eventually the simulation degrades to what 

might be termed the “long term accuracy” of the model. For Delta 

Simulation Model 2 (DSM2) operational modeling, an optimization procedure 

(described in Ateljevich 2000) is sometimes used to achieve similar goals.  

For completeness, an alternative way to begin a historical simulation is with 

a “cold start” in which a generic initial condition is used with the 

understanding that the simulation results for some time after the start will 

be in error. After a cold start, it may take months for the influence of the 

initial conditions of some water quality parameters to disappear. 

Additionally, in SCHISM, a cold start is often not physical — for instance, 

https://github.com/CADWRDeltaModeling/schimpy.git
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there may not be a reasonable constant to use for salinity that is applicable 

to the whole domain — and many innocuous-seeming assumptions can lead 

to strange horizontal salt gradients and associated shocks in the modeled 

flow field. Neither the computational cost of a long startup nor the baroclinic 

shocks happen in DSM2, which may indicate why cold starts are a more 

common practice for that model. Indeed, when SCHISM is used as a 2D or 

barotropic model without salinity transport (i.e., for flood modeling or as a 

warmup to generate reasonable ocean boundary velocities), the run is 

typically cold started using text files and simple assumptions, such as a flat 

water surface and zero water velocity. 

After initialization, it is also possible to incorporate observations into the 

model over a longer period, a practice known as data assimilation. The 

simplest, Newtonian relaxation, often referred to as nudging, is a process of 

relaxing the model toward local observations, creating final merged fields 

that reflect both the model dynamics and observations.  

There are numerous advantages to nudging: 

• It improves initialization by bringing observational data in over a 

length of time. Likewise, it may mitigate a situation where the usual 

data for initializing the model are not available. 

• It may help to characterize some local dynamics that cannot be fully 

captured by the model. 

• It results in a more flexible way to apply the model boundary 

conditions than forcing the model to exactly adopt the pre-defined 

values at the boundaries. This is especially helpful when the boundary 

condition is uncertain, as is the case for the ocean boundary of the 

Bay-Delta SCHISM Delta model.  

• It allows modelers to tune subdomains or subprocesses (which are not 

nudged) while holding far-field influences or unrelated processes 

closely pinned to field data. An example is sediment resuspension in 

the Suisun Marsh area — assimilating sediment information upstream 

on the Sacramento–San Joaquin River confluence allows practitioners 

to focus on work in the Suisun region in isolation. 

• For some applications of models, such as hindcasts of habitat 

distribution, accurate reproduction of a single historical scenario is the 
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only goal. In these cases, bringing data and models together is an 

obvious choice. 

There are also limitations to data assimilation, the most obvious being that 

assimilation is only possible when there are data. Nudging must stop at the 

bifurcation point of different planning situations or at the end of the available 

data stream. A second limitation is that care must be taken to assure 

stakeholders that data assimilation (except at the ocean boundary) does not 

intrude on model validation or assessment. In this regard, validation (where 

nudging could be perceived as cheating) is very different from calibration 

(where it can be a valuable tool).  

The goal of the present work was to extend the algorithms and methods 

available for preparing initialization and nudging files for SCHISM. Before the 

project, Fortran preprocessors to prepare hotstart and nudging files were 

already disseminated with the original Bay-Delta SCHISM package. 

Unfortunately, these tools were hardwired to specific variables, data sources, 

and interpolation methods. The new Python tools fit in with the schimpy 

preprocessor and allow more flexibility of creating both hotstart and nudging 

files for SCHISM under more versatile conditions — a detailed description of 

these applications is given in this chapter.  

5.2 Hotstart preprocessor 

5.2.1 Introduction 

The hotstart preprocessor (schism_hotstart.py) is a new module in schimpy. 

This preprocessor: (1) provides a consistent framework that merges the 

observed mooring and discrete sampling data from multiple sources in the 

Bay-Delta system, and (2) applies the merged fields to create 3D initial 

conditions of salinity, temperature, suspended sediment concentration, and 

biogeochemical variables for SCHISM. Input data for the hotstart 

preprocessor can be established in several ways. The initial field can be 

interpolated from various types of observations or from a prior model run 

with possibly different horizontal or vertical grids or with a different set of 

active modules.  

The output of the preprocessor is a file in NetCDF format, an open-source 

high-performance binary software library and format specification widely 
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used in estuary, oceanographic, and climate models. The name of a hotstart 

file is usually derivative of “hotstart.nc”.  

5.2.2 Methods  

To initialize a 2D or 3D field for a model variable, a range of settings needs 

to be specified, such as variable name, the names of files holding 

observational data to be used to initialize the model, and the spatial 

interpolation method to be applied. The hotstart preprocessor uses a YAML-

formatted file as the input file. YAML (Yet Another Markup Language) is an 

intuitive, ubiquitous human-readable data-serialization language that can 

both be read as a text file and interpreted programmatically (e.g., via 

python). Nearly every schimpy capability is specified in this language.  

Classes: hotstart and VariableField were created to meet the preprocessor’s 

required functionality. The hotstart class reads the input hotstart.yaml file 

(hotstart.read_yaml), initializes the output hotstart.nc file 

(hotstart.initialize_netcdf: defining wet-dry cells and the initial condition for 

turbulent mixing), loops through each of the variables defined in the YAML 

file to generate a dataset for each of the 3D fields (hotstart.generate_3D_field), 

and finally maps the dataset to the specific format required to hotstart 

SCHISM (hotstart.map_to_schism). Within the software, the data are stored in 

xarray format, a python library for managing multidimensional data, which 

also works well with NetCDF. The steps defined above are bundled in one 

function: hotstart.create_hotstart. The VariableField class is a major factor in 

handling the spatial interpolation and merging for the modeled variable 

fields. The class is reinitialized for each variable and generates a 3D field 

based on the settings defined in the hotstart.yaml for the variable.     

After the hotstart file (hotstart.nc) is created, users can visualize the 3D 

fields generated for error detection and data presentation. The variable fields 

can either be plotted in 2D by schism_mesh.plot_elems, schism_mesh.plot_nodes, or 

schism_mesh.plot_edges, or be converted to the SCHISM output format 

(schout_hotstart.nc) by the function hotstart_to_outputnc in order to be 

viewable in either 2D or 3D in VisIt. To visualize schout_hotstart.nc, VisIt, a 

plug-in created by DWR, needs to be installed. The source code for the plug-

in is available at https://github.com/schism-dev/schism_visit_plugin, along 

with a user guide with the VIMS schism documentation and links to Windows 

binaries. Note that hotstart_to_outputnc, rather than being imbedded in the 

hotstart class, is written as an independent function. Consequently, hotstart 

https://github.com/schism-dev/schism_visit_plugin
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files generated by other means (such as directly from SCHISM) can also be 

converted to schout_hotstart.nc and visualized in VisIt.  

5.2.3 Hotstart usage 

The hotstart processor can be invoked as a standalone utility, 

create_hotstart, which is automatically installed by conda or 

programmatically through python.  

The simplest invocation is typing the following in a python prompt: 

create_hotstart --input hotstart.yaml --modules TEM,SAL,SED 

Additional processing and plotting options are available. A complete listing is 

available by typing: 

create_hotstart --help 

The hotstart options are described in the input yaml file (hotstart.yaml in the 

above example). The command line option “modules” allows you to choose a 

subset of the defined variables and create a smaller file. Additional options 

and decisions are described in the following sections. 

The second approach is to invoke the hotstart processor programmatically 

within python. An example script to generate the hotstart.nc file for a 

sediment transport run, convert it to schout.nc file, and visualize the 

generated 2D surface temperature in the Delta is given below.  

    from schism_hotstart import hotstart 
    h = hotstart('hotstart.yaml',modules=['TEM','SAL','SED'])        
    v1 = h.create_hotstart() 
    coll = h.mesh.plot_elems(v1['tr_el'].values[:,-1,0],clim=(15,22)) 
    cb = plt.colorbar(coll) 
    plt.axis('off') 
    plt.title('Regional Temperature') 
    plt.tight_layout(pad=1) 

 

A map of the interpolated surface temperature field from the generated 

hotstart file is presented in Figure 5-1.  
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Figure 5-1 A spatial map of surface water temperature generated by 

merging observations from both USGS Polaris cruise and continuous 

observational data throughout the SCHISM domain 

 

5.2.3.1 Example hotstart YAML files 

A list of hotstart YAML files with various purposes and initialization methods 

is presented in Table 5-1. 

Table 5-1 A list of example hotstart YAML files for various 

application and initialization methods 

Application Modules Tracers Example YAML file 

Basic baroclinic run NA TEM, SAL tracer_age/hotstart.ya
ml 

Sediment transport SED TEM, SAL, SED_1, 
SED_2, SED_3 

sed/hotstart.yaml 
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Application Modules Tracers Example YAML file 

hotstart based on a 
previous hotstart file 
with AGE and 
TRACER modules 
turned on 

GEN, AGE TEM, SAL, GEN_1, 
AGE_1 

tracer_age/hotstart_fr
om_prev_hotstart_GE
N_AGE.yaml 

hotstart with 
biogeochemical 
options: CoSiNE and 
ICM only 

COSINE, 
ICM 

TEM, SAL, 

COS_i (i varies from 
1 to13), 

ICM_i (i varies from 
1 to 25) 

bio/hotstart_cosine_ic
m.yaml 

Note: The path for the example files is: 
https://github.com/CADWRDeltaModeling/schimpy/tree/master/examples/schism_hotsta
rt 

5.2.3.2 Projection 

Any spatial projection may be used for the hotstart generator, but the UTM 

(Universal Transverse Mercator) coordinate system for the Bay Delta grid is 

the default projection system, and the user does not need to supply a 

projection for the hotstart class if all the input data has the same projected 

coordinates. It is preferrable that the hotstart initialization operates within a 

consistent coordinate system.  

The applications where input data and SCHISM mesh file (i.e., hgrid.gr3 file) 

differ in coordinate systems are not supported. When the destination mesh 

is in Latitude (Lat) and Longitude (Lon) coordinates (usually when the wind-

wave model is invoked), a projected mesh is used first to create a hotstart 

file, and then the hotstart file will be used together with the desired hgrid file 

(Lat-Lon based) for SCHISM. 
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If the SCHISM input horizontal grid file (hgrid.gr3) is based on World 

Geodetic System, 1984 revision (WGS 84), it can be easily converted to UTM 

coordinate system using the following example script:   

from schimpy.schism_mesh import read_mesh, write_mesh 

import schimpy.schism_hotstart as sh      

mesh =  read_mesh('hgrid.gr3', 

                   proj4='EPSG:4326')          # WGS 84 

mesh_new = sh.project_mesh(mesh,'EPSG:32610')  # UTM Zone 10N. 

write_mesh(mesh_new,'hgrid_new.gr3') 

5.2.3.3 Modules and variable names 

The default model variables that must be initialized for any SCHISM runs are 

elevation, temperature (TEM), salinity (SAL), velocity_u, velocity_v, and 

velocity_w, where only temperature and salinity are tracer variables. In the 

hotstart.yaml file, the names of these variables should use these names. 

When the sediment module (‘SED’) is turned on, a few extra tracer variables 

and model variables related to a sediment bed are also needed. The python 

function schism_hotstart.describe_tracers can be applied to the main control 

input file for schism (param.nml) to produce a complete list of tracer 

variables (including temperature and salinity) for any combination of add-on 

modules in SCHISM. For example, the list for the sediment transport module 

of: 

ntracers,ntrs,irange_tr,tr_mname=describe_tracers(“param.nml”, 
modules=[’SED’])  

will parse param.nml to output a complete list of tracer variables tr_mname = [ 

‘TEM’,’SAL’,'SED_1', 'SED_2', 'SED_3'] that need to be initialized to run the 

model given the specified enabled modules. Note that either ‘temperature’ or 

‘TEM’ and ‘salinity’ or ‘SAL’ can be used as variable names for the 

hotstart.yaml file, and they are by default required tracer variables in a 

hotstart file unless the “modules” variable is defined as an empty list 

(modules=[]). A hotstart without tracer variables is useful to initialize a 

SCHISM run in barotropic mode where no tracer transport is modeled.  

It is helpful to know the list of tracer variables because, in the final stage of 

generating a hotstart.nc, all tracer variables in the tr_mname list will be 

combined in order to create the three tracer variables required to initialize 
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SCHISM: tr_el (all tracers on element [elem, nVert, ntracers]), tr_nd (all 

tracers on node [node, nVert, ntracers]), and tr_nd0 (==tr_nd). The tracer 

input data can be specified either on node (by .ic file) or on element 

(by .prop file). If not defined on node, tracer data will first be interpolated to 

node to generate tr_nd0 and tr_nd and then to element center to generate 

tr_el by averaging all node values attached to the element.  

Additional sediment bed variables must be initialized representing sediment 

bed properties: SED3D_dp, SED3D_rough, SED3D_bed, and 

SED3D_bedfrac. These variables are not 3D tracer variables (and will not be 

combined into tr_* in the hotstart.nc) and therefore are not listed in 

tr_mname. Instead, they will be saved as independent variables in the 

hotstart.nc file.  

The currently available modules in SCHISM are listed below. Those 

implemented in schism_hotstart.py and tested in SCHISM runs are indicated 

by “Done”. 

!     1: T (default, Done) 

!     2: S (default, Done) 

!     3: GEN (Done) 

!     4: AGE (Done) 

!     5: SED3D or SED (Done) 

!     6: EcoSim or ECO (In testing) 

!     7: ICM: ICM and/or ICM_PH (In testing) 

!     8: CoSINE: COSINE (Done) 

!     9: Feco: FIB (not sure if the tracers can be initialized in a hotstart file) 

!    10: TIMOR (not implemented) 

!    11: FABM (not implemented)   

5.2.3.4 Centering  

The centering refers to where a model variable is specified relative to the 

mesh topology. For instance, in the schism algorithm, some data are defined 

on node and tracers are generally defined on prism (cell) center. Options 

include node, edge, and elem (element) in the horizontal direction and on 

the whole- or half-level in the vertical direction. Each model variable is tied 

to a unique centering option. A list of centerings and the corresponding 

model variables is presented in Table 5-2. These locations are automatically 

assigned according to the variable names in the hotstart preprocessor. Note 

that all tracer variables must be prism-centered (element center at half-

level).  
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Table 5-2 Centering of typical model variables 

Centering  Position Example model variables 

node2D node at surface or bed 
Elevation (elev), SED3D_rough, 
SED3D_dp 

node3D node at whole level 

All variables related to total kinetic 
energy (TKE). The only available 
options are: (1) 0 (default); and (2) using 
the values provided by an existing 
hotstart.nc file.  

edge edge center at whole level velocity_u, velocity_v 

elem element center at whole level velocity_w 

prism 
prism center or element center 
at half level 

tracers (salinity, temperature, etc.) 

bed 
element center at sediment 
layer 

SED3D_bed 

bedfrac 
element center at sediment 
layer with 3 sediment 
properties 

SED3D_bedfrac 

5.2.3.5 Initializers 

The initializers define the methods chosen to initialize the variable fields. Six 

options are currently available, described below: 

• text_init: Text initialization is based on 2D map input from either 

*.prop (values defined on elem) or *.ic (on node) files, which are 

reduced-dimension formats that are native to SCHISM and described 

in the SCHISM manual 

(http://ccrm.vims.edu/schismweb/schism_manual.html). One input 

text file for each variable is required.  

• simple_trend: Can either be a number or an equation that depends on 

the projected x, y, and z in native coordinates such as degrees or 

meters. One particularly common example is when the initial surface is 

put just below the bed in dry areas, which is given by max (-z-0.1, 

0.97), where 0.1 m is the distance below the bed (z represents bed 

depth, which is positive downwards), and 0.97 sets the initial elevation 

(in North American Vertical Datum of 1988 [NAVD88] meters) for 

elements that are wet — in other words, a bed below 0.97m elevation.  

• extrude_casts: 3D spatial interpolation based on transect data (data 

points collected along a trajectory), such as boat cruising along a 

transect taking vertical “casts” of data at multiple horizontal points. 

http://ccrm.vims.edu/schismweb/schism_manual.html
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This category of data includes USGS cruise data from the USGS Polaris 

and its successor, the RV Peterson (Schraga et al. 2020). Two input 

files are required: a CSV file that defines the UTM locations for all the 

stations (with columns “Station”, “x”, and “y”) and a CSV file that 

contains the data (with columns “Station”, “Depth (m)”, and a user-

defined variable name). A simple nearest-neighborhood method in the 

horizontal direction and a linear interpolation-extrapolation method in 

the vertical direction are currently applied to create a 3D tracer field 

based on the observed data.  

• obs_points: 2D spatial interpolation based on time series of continuous 

observations across multiple stations. One CSV file is required for the 

option (with columns “x”, “y”, and a user-defined variable name). A 2D 

horizontal field is interpolated from the observational data, and only an 

inverse-distance-weighing method is currently available to perform the 

interpolation task. The variable field is assumed to be uniform in the 

vertical direction. 

• patch_init: Regional based method. A polygon shape file or YAML file 

that divides the mesh into different regions is required, and a function 

geo_tools.partition_check will be called to check that the computational 

domain divided by regions (defined in the shapefile or YAML file) is 

unique and complete. If a cell is not within the geographic boundary of 

any defined regions (orphaned cells), it will be assigned to the nearest 

region. If a cell is positioned within multiple regions, it will be assigned 

to only one region to satisfy uniqueness requirement. The region 

names defined in the hotstart.yaml must match the “region” attribute 

for each polygon defined in the shapefile or YAML file. All other 

initializers (text_init, simple_trend, extrude_casts, obs_points and 

hotstart_nc) can be applied to each individual region and stitched 

together to generate the final tracer field for the entire domain.  

• hotstart_nc: Initialization option using a source hotstart file 

(hotstart.nc) produced by a previous run. The source grid can be 

different from the destination grid, and a spatial interpolation will be 

applied to map the values from the old grid to the new one. Note that 

performing vertical interpolation between the two full meshes can be 

very slow. There are two ways to make the process faster if the two 

meshes are mostly the same except for a small percentage of cells.  
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o patch_init: In the following code, only the cells within the 

polygon region “edb” are interpolated vertically; all the other 

cells are assigned a region name ‘other’ and the nearest cell 

values from hotstart_source.nc are used (no vertical 

interpolation).  

    salinity: 

        centering: prism 

        initializer:  

            patch_init:  

                smoothing: False 

           # the attribute 'region' in the shapefile  

           # needs to match with the region values below.      

                regions_filename: edb_polygon.shp  

                regions:  

                  - region: edb 

                    initializer:  

                        hotstart_nc: 

                            data_source: hotstart_it=2688000.nc                 

                            source_hgrid: hgrid.gr3    

                            #if the source hgrid is different 

                            source_vgrid: vgrid.in.3d     

                       #if the source vgrid is different 

                            vinterp: True 

                  - region: other 

                    initializer:  

                        hotstart_nc: 

                            data_source: hotstart_it=2688000.nc                 

                            source_hgrid: hgrid.gr3    

                            source_vgrid: vgrid.in.3d     

                            vinterp: False 

o Define distance_threshold: When distance_threshold is defined, 

the interpolation method will only be applied to the new cells 

(those cells with distance to the nearest cells greater than a 

predefined distance_threshold). The distance_threshold has 

many uses, but an important one is the case where parts of the 

source and destination mesh are supposed to be very similar 

both horizontally and vertically. In this case values are copied 

over rather than interpolated. 
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Two methods are available to create variable fields for the new cells: 

3. The “nearest” option will use the vertical profiles from the nearest 

horizontal cell of the source mesh to interpolate vertically to the new 

cells.  

4. Define a function of “x”, “y”, or “z”.  

distance_threshold: 10     # the unit here is meter for UTM grid.  

method: nearest            # method: nearest interpolate vertically 
method: np.maximum( -(z+0.1), 0.97)  # a simple function (for flooded 
island case) 

o option: vinterp = False 

if distance_threshold is not defined, an additional key “vinterp” can be 

set to switch on/off vertical interpolation. The default value of “vinterp” 

is False, so if no vinterp value is given, the script assumes that no 

vertical interpolation will be performed unless the number of the 

vertical layers between the two meshes is different. When the number 

of vertical layers is different, vertical interpolation of the entire mesh 

must be applied. Note that performing vertical interpolation can be 

very slow and should not be turned on for the entire domain unless 

necessary.  

5.2.4 The auxiliary functions  

A few new auxiliary functions were created in schimpy. Although they were 

developed for the hotstart preprocessor, they could also be used to support 

other efforts. A list of the most useful functions is explained and presented 

below.  

In class schism_mesh (schism_mesh.py) 

• to_geopandas (self,feature_type='polygon',proj4=None,shp_fn=None,                 

node_values=None, value_name=None, create_gdf=True) 

A function that converts schism horizontal mesh into polygon or points 

as geopandas data frames and saves them as shapefiles. This step 

takes advantage of the powerful spatial analysis and domain 

manipulation tools provided by geopandas PYTHON library.   
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• plot_elems(self,var=None,ax=None,inpoly=None,**kwargs) 

Plot a 2D map of var (which should be input as a 1D array of values on 

elem, e.g., modeled surface salinity field at one time step) on SCHISM 

computational mesh. If input var is None, only the mesh grid itself will 

be plotted. 

• plot_nodes(self,var,ax=None,inpoly=None,**kwargs) 

Similar to the above, but plot a 2D map of variables on node.  

• plot_edges(self,var,ax=None,size=500,inpoly=None,**kwargs) 

Similar to the above, but plot a 2D map of variables on edge. 

• schism_mesh.compare_mesh() 

Function designed to compare two meshes and map each node of 

mesh2 to mesh1.  

• schism_hotstart.project_mesh() 

Function to project the nodes of a mesh from one coordinate system to 

another one.  

In geo_tools.py 

• partition_check(mesh,poly_fn,centering='nodes') 

Check if the schism mesh division by the polygon features in poly_fn is 

unique and complete.  

The input poly_fn can either be a shape file or a YAML file that 

specifies the boundary coordinates of the polygons. 

The partition check performed for the SCHISM horizontal mesh is 

based on either node (centering='node') or element 

(centering='elem'), and the function checks: 

    (1) if there are any orphaned nodes/elems 

(nodes/elems that do not fall within any polygon defined 

above). If so, the nearest polygon will be applied to the 

orphaned nodes/elems.  
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    (2) if any nodes/elems were assigned to multiple 

polygons. If so, only the last assigned polygon will be 

applied to categorize the nodes/elems.  

• ll2utm(lonlat,proj4=None) and utm2ll(utm_xy,proj4=None) 

Conversion between WGS 84 (Lat, Lon) and UTM coordinate systems. 

No input for proj4 is required if the input or output Lat-Lon coordinate 

is based on WGS84.  

In schism_hotstart.py 

• read_param_in(nml_fn) 

Read param.nml or other input files (e.g., sediment.nml) and generate 

a dictionary object with (key, value) pairs for all the parameters.  

• describe_tracers(param_in,modules=['TEM','SAL']) 

This function returns the total number of tracers (ntracers), the 

number of tracers for each add-on module, the starting and ending 

indices in the tracer list for the tracer items in each module, and a list 

of tracer names based on the input list of modules and param.nml. 

More details about this function are in Section 5.2.3.2.   

• hotstart_to_outputnc(hotstart_fn,init_date,hgrid_fn = 

'hgrid.gr3',vgrid_fn = 'vgrid.in',outname="hotstart_out.nc") 

This function converts hotstart.nc to schism output NetCDF file format 

that can then be read and visualized by VisIt. The hotstart.nc can be 

generated by schism_hotstart.py or SCHISM itself.  

5.3 Nudging preprocessor 

5.3.1 Introduction 

The nudging preprocessor (schism_nudging.py) is another new tool in 

schimpy. The script performs two tasks: (1) providing boundary conditions 

of temperature and salinity off the California coast based on the simulated 

ROMS modeling results by CenCOOS (https://www.cencoos.org/), and (2) 

providing nudging values and weights in the interior of the model domain to 

nudge the model state closer to observations. 

https://www.cencoos.org/
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5.3.2 Methods 

5.3.2.1 How nudging is implemented in SCHISM.  

In SCHISM source code (hydro/schism_steps.f90), nudging is achieved by 

the following equations: 

𝑛𝑢_𝑒𝑙𝑗,𝑘,𝑖 = (∑ ∑ 𝑛𝑢_𝑛𝑑𝑗,𝑘,𝑒𝑙𝑛𝑜𝑑𝑒(𝑖)𝑒𝑖

𝑖34(𝑖)
𝑒𝑖=1

𝑘
𝑘=𝑘−1 )/2/𝑖34(𝑖)                 (1) 

𝑡𝑟_𝑒𝑙𝑗,𝑘,𝑖 = 𝑡𝑟_𝑒𝑙𝑗,𝑘,𝑖 ∗ (1 − 𝑡𝑟𝑛𝑢) + 𝑡𝑟_𝑛𝑢𝑗,𝑘,𝑖 ∗ 𝑛𝑢_𝑒𝑙𝑗,𝑘,𝑖        𝑖𝑓  𝑛𝑢_𝑒𝑙𝑗,𝑘,𝑖 > −99.0 (2) 

where: 

𝑛𝑢_𝑒𝑙𝑗,𝑘,𝑖 is the nudging value for tracer j, vertical level k, and element i, and 

it is calculated by averaging the nudging values on node (𝑛𝑢_𝑛𝑑𝑗,𝑘,𝑒𝑙𝑛𝑜𝑑𝑒(𝑖)) and 

over the two adjacent vertical levels (k and k+1). 𝑛𝑢_𝑛𝑑𝑗,𝑘,𝑒𝑙𝑛𝑜𝑑𝑒(𝑖) for each 

tracer is defined in the *_nu.nc file (see Section 5.3.2.2), where the * is a 

wildcard referring to one tracer such as SAL or TEM. 

𝑒𝑙𝑛𝑜𝑑𝑒(𝑖) is a function that finds the indices of nodes attached to element i; ii 

iterates all nodes that belong to the element i, which have a range from 1 to 

i34. For SCHISM meshes, either triangular (i34=3) or quadrangular (i34=4) 

grids are allowed.   

𝑡𝑟_𝑒𝑙𝑗,𝑘,𝑖 on the RHS of equation (1) represents the modeled tracer fields, and 

that on the LHS means a combination of modeled and nudging tracer fields.  

Weight factor 𝑡𝑟_𝑛𝑢𝑗,𝑘,𝑖 controls how much the combined fields relax toward 

the nudging fields and must lie between 0 and 1. A weight factor 𝑡𝑟_𝑛𝑢𝑗,𝑘,𝑖=0 

means no nudging (combined fields are equal to the modeled fields), and 

𝑡𝑟_𝑛𝑢𝑗,𝑘,𝑖=1 means that the combined fields are equal to the nudging fields 

(i.e., the modeled fields are discarded).  

𝑡𝑟_𝑛𝑢𝑗,𝑘,𝑖 is a weight factor that combines a horizontal weight (𝑡𝑟_𝑛𝑢_ℎ𝑗,𝑖) and 

vertical weight (vnf).   

𝑡𝑟_𝑛𝑢𝑗,𝑘,𝑖 =(𝑡𝑟_𝑛𝑢_ℎ𝑗,𝑖 + 𝑣𝑛𝑓𝑗,𝑘,𝑖) ∗ 𝑑𝑡       (3) 

dt is the computational time step.  

𝑡𝑟_𝑛𝑢_ℎ𝑗,𝑖 is the horizontal weight on element i for tracer j calculated by 

averaging all weight factors on node that belong to the element.  
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𝑡𝑟_𝑛𝑢_ℎ𝑗,𝑖 = (∑ 𝑡𝑟_𝑛𝑢𝑑𝑔𝑒𝑗,𝑒𝑙𝑛𝑜𝑑𝑒(𝑖)𝑖𝑖

𝑖34(𝑖)
𝑖𝑖=1 )/𝑖34(𝑖)      (4) 

where i34(i) is the number of nodes (3 or 4) in the element i. tr_nudge are 

the horizontal weights on node defined in *_nudge.gr3 for each tracer (see 

Section 5.3.2.2), where again * is a wildcard representing the particular 

model variable such as SAL or TEM.  

In schimpy/schism_nudging.py, for point observations, the horizontal weight 

(tr_nudge) is defined as a Gaussian-shaped function (with the peak 1 at the 

observation location) divided by a nudging time scale (𝑡𝑠𝑒𝑐𝑜𝑛𝑑). The Gaussian 

weights are calculated by the node distance from a predefined central point 

and a length scale (L).  

𝑡𝑟_𝑛𝑢𝑑𝑔𝑒𝑗,𝑛𝑖 = 𝑒
−

(𝑥𝑛𝑖−𝑥0)2+(𝑦𝑛𝑖−𝑦0)2

2𝐿2

𝑡𝑠𝑒𝑐𝑜𝑛𝑑
⁄        (5) 

Where (𝑥𝑛𝑖, 𝑦𝑛𝑖) and (𝑥0, 𝑦0) are the coordinates of node ni and a predefined 

central point, respectively. (𝑥0, 𝑦0), L, and 𝑡𝑠𝑒𝑐𝑜𝑛𝑑 are all defined in a nudging 

YAML file, which is a master input file for the nudging preprocessor (see 

Section 5.3.2.3 for more details).  

The vertical weight 𝑣𝑛𝑓𝑗,𝑘,𝑖is dependent on depth and given by: 

𝑣𝑛𝑓𝑗,𝑘,𝑖 = {

𝑣𝑛𝑓1,                                                                  𝑍𝑒𝑘,𝑖 > −𝑣𝑛ℎ1

𝑣𝑛𝑓1 + (𝑣𝑛𝑓2 − 𝑣𝑛𝑓1) ∗
𝑍𝑒𝑘,𝑖+𝑣𝑛ℎ1

𝑣𝑛ℎ1−𝑛𝑣ℎ2
,   −𝑣𝑛ℎ1 ≥ 𝑍𝑒𝑘,𝑖 ≥ −𝑣𝑛ℎ2

𝑣𝑛ℎ2,                                                                𝑍𝑒𝑘,𝑖  < −𝑣𝑛ℎ2

  (6) 

where vnf1, vnf2, vnh1, and vnh2 are vertical relaxation factors defined in 

the master input file param.nml.  

This creates depth-dependency in which the nudging factor can gradually 

strengthen or weaken with depth. The current default values for vnf1 and 

vnf2 are 0, so the depth-dependence weight is 0.  

5.3.2.2 The design of the preprocessor 

A class “nudging” in schism_nudging.py was created to generate the 

nudging files (both *_nu.nc and *_nudge.gr3) required to apply nudging to 

SCHISM. *_nu.nc stores the 3D nudging values on node and whole vertical 

levels for the corresponding tracer, *_nudge.gr3 stores the 2D horizontal 

weights on node for the corresponding tracer, and the asterisk (*) here is a 
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generic stand-in for a tracer name (e.g., TEM for temperature and SAL for 

salinity). A more detailed description on how the nudging values and weights 

influence the modeled field is given in Section 5.3.2.1. The computational 

domain is assumed to be divided into multiple polygons (regions), with 

different nudging options to be applied to the different polygons. The script 

iterates through the polygons, creates nudging weights and values according 

to the defined method for each polygon (nudging.create_region_nudging), 

organizes the nudging data, and finally concatenates the nudging data 

(nudging.concatenate_nudge) to create a combined dataset for the entire domain. 

A function that bundles all the above steps is nudging.create_nudging.  

5.3.2.3 Nudging files required to run SCHISM and schism_nudging.py. 

For each nudging variable, SCHISM requires two nudging files: *_nudge.gr3 

and *_nu.nc.  

*_nudge.gr3 (e.g., SAL_nudge.gr3 or TEM_nudge.gr3) defines the nudging 

weights to be applied to each node in SCHISM. When node weight is equal to 

or less than zero, no nudging is applied to the node. 

*_nudge.gr3 (e.g., SAL_nu.nc or TEM_nu.nc) defines the nudging values to 

be applied to each node at each vertical level.  

schism_nudging.py script creates both *_nudge.gr3 and *_nu.nc input files 

required by SCHISM.  

5.3.3 nudging usage 

Similar to the hotstart preprocessor, the nudging processor can be invoked 

as a standalone utility or programmatically through python.  

To invoke it as a standalone utility, type the following command in a python 

prompt (such as miniconda): 

create_nudging --input nudging.yaml 

A complete listing of available options can be viewed by typing: 

create_nudging --help 
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To invoke the nudging processor programmatically through python, type the 

following commands in a python editor or write a script that includes these 

commands.  

from schimpy import schism_nudging 

yaml_fn = 'nudging.yaml' 

nudging = schism_nudging.nudging(yaml_fn,proj4 ='EPSG:32610') #proj does not need to 
be defined if the grid is already in utm coordinates. 

nudging.read_yaml() 

nudging.create_nudging() 

An example YAML file 

(https://github.com/CADWRDeltaModeling/schimpy/blob/master/examples/s

chism_nudging/nudge.yaml) is presented to provide an example of 

generating combined weights and nudging fields from a combination of 

ROMS modeling results at the ocean boundary, a single-point observation at 

GZL (Grizzly Bay), and multi-point observations from various observational 

sites across the Delta. The combined temperature nudging values and 

weights are shown in Figure 5-2. A close-up view of the nudging salinity 

compared with the modeled ROMS temperature and salinity at the ocean 

boundary is shown in Figure 5-3. 

Detailed options to set up nudging.yaml are presented in the following 

sections.  
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Figure 5-2 The left panels show the nudging values (nu_salt) for 

salinity and the right panels show the product of nudging values and 

weights 
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Figure 5-3 The left panels show the nudging values for temperature 

(top) and salinity (bottom) implemented in SCHISM and the right 

panels show the modeled temperature (top) and salinity (bottom) 

from ROMS 

 

5.3.4 nudging options 

Two nudging options are currently available: roms and obs. 

5.3.4.1 roms option 

This option was designed to generate ocean open boundary condition of 

temperature and salinity from the simulated ROMS modeling results from 

the CenCOOS program 

(http://thredds.cencoos.org/thredds/catalog.html?dataset=CENCOOS_CA_R

OMS_DAS). “Vertices” define the boundary of the region that this option will 

be applied to.  
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5.3.4.2 obs option 

The obs option nudges model results to observation points in a polygon 

region defined by “vertices.” When the nudging area is not defined 

(verticies: None), this option of nudging will only be applied to nodes where 

the nudging weights are greater than 0. “Attribute” defines the method used 

to generate the weights; currently only the gaussian method is available. 

The coordinates (x and y) of the observational points, length_scale and 

time_scale, need to be defined for the attribute. Note that when the weights 

are set to zero when they become less than 10-3 of the maximum Gaussian 

weight. “Interpolant” defines the method to generate spatial nudging values, 

the data source (in either *.csv or *.nc format), and the variables to be 

interpolated. Only the nearest and inverse distance weighing methods are 

available for spatial interpolation.  
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